以北京为研究区域, 利用MODIS气溶胶光学厚度产品AOT(Aerosol Optical Thickness)定量反演北京近地面PM2.5质量浓度。首先对MODIS AOT与对应地面实测PM2.5质量浓度为数据源, 两者的线性相关系数为0.323, 经过AOT标高订正和PM2.5湿度订正后, 两者相关系数升高为0.467; 进一步分析AOT与PM2.5的季节变化特征发现, 秋季相关性最高(0.802), 春季最低(0.252), 其他季节介于之间, 并深入分析了AOT与PM2.5自身物理化学特性及气象因子对两者相关性的影响机制; 最后在耦合标高和湿度订正基础上, 建立了一个近地面PM2.5质量浓度对数反演模型, 并与地面实测PM2.5样本进行对比分析, 结果显示均方根误差为2.84%, 平均误差为9.53%, 验证了该对数反演模型能较好的依据AOT反演近地面PM2.5质量浓度的可行性, 为卫星遥感高精度定量反演PM2.5提供了科学依据。
Urban haze is becoming more and more serious in these years, especially in the Yangtze River Delta region, the Pearl River Delta region, the Area of Beijing ferry look forward to and other cities, the PM2.5 particles are the main component. In order to mainly retrieve mass concentration about PM2.5 near the surface using MODIS AOT(aerosol optical thickness) data. Firstly, the comparison analyses between AOT from MODIS and corresponding PM2.5 mass concentration in situ are done, the direct linear correlation coefficient R=0.323. And then R=0.467 improved on the base of elevation correction for AOT and relative humidity correction for PM2.5 primarily. Secondly, the seasonal variations about AOT and PM2.5 in depth are analyzed, find that the correlation is highest in autumn, 0.802, and lowest in spring, 0.252, and other seasons are between them, and analyzing the effect mechanism from AOT and PM2.5 themselves' physical and chemical features and meteorological factors to the both correlativity. In the end, a logarithm reversion model about PM2.5 mass concentration coupled with the elevation and relative humidity correction is constructed, the RMSE is 2.84% and mean error is 9.53% respectively, compared to ground measured data. Studies show that this logarithm reversion model can retrieve PM2.5 mass concentration near the ground effectively using AOT, and provide a new scientific basis for PM2.5 reversion by remote sensing, and also valuable for haze detection.
[1]Wang Y, Zhuang G S, Sun Y L, et al. The variation characteristics and formation mechanisms of aerosols in dust, haze, and clear days in Beijing[J]. Atmos Environ, 2006, 40(34): 6579-6591.
[2]王荟, 王格慧, 高士祥, 等. 南京市大气颗粒物春季污染的特征[J]. 中国环境科学, 2003, 23(1): 55-59.
[3]Xie S D, Yu T, Zhang Y H, et al. Characteristics of PM<sub>10</sub>, SO<sub>2</sub>, NO<sub>x</sub> and O<sub>3</sub> in ambient air during the dust storm period in Beijing[J]. Science of the Total Environment, 2005, 345(1-3): 153-164.
[4]WHO (World Health Organization). Air quality guidelines for Europe[R]. Second edition. WHO Regional Publications, European Series, NO. 91, 2000.
[5]高中明, 闭建荣, 黄建平. 基于AERONET和SKYNET网观测的中国北方地区气溶胶光学特征分析[J]. 高原气象, 2013, 32(5): 1293-1307, doi: 10.7522/j.issn.1000-0534.2012.00116.
[6]Sisler J F, Huffman D. Spatial and seasonal trends in particle concentration and optical extinction in the United States[J]. J Geophys Res: Atmospheres, 1994, 99(D1): 1347-1370.
[7]Li C C, Mao J T, Lau A K, et al. Application of MODIS aerosol product in the study of air pollution in Beijing[J]. Science in China: Earth Science, 2005, 35: 177-186.
[8]王钊, 彭艳, 车慧正, 等. 近10年关中盆地MODIS气溶胶的时空变化特征[J]. 高原气象, 2013, 32(1): 234-242, doi: 10.7522/j.issn.1000-0534.2013.00023.
[9]齐冰, 杜荣光, 徐宏辉, 等. 杭州市区大气气溶胶散射特性观测分析[J]. 高原气象, 2014, 33(1): 277-284, doi: 10.7522/j.issn.1000-0534.2012.00186.
[10]李霞, 任宜勇, 吴彦, 等. 乌鲁木齐污染物浓度和大气气溶胶光学厚度的关系[J]. 高原气象, 2007, 26(3): 541-546.
[11]Chu D A, Kaufman Y J, Zibordi G, et al. Global monitoring of air pollution over land from the ear th observing system-terra moderate resolution imaging spectroradiometer (MODIS)[J]. J Geophys Res: Atmospheres, 2003, 108 (D21), 4661, doi: 10. 1292002JD003179.
[12]Wang J, Christopher S A. Intercomparison between satellite-derived aerosol optical thickness and PM<sub>2.5</sub> mass: implications for air quality studies[J]. Geophys Res Lett, 2003, 30(21), 2095, doi: 10.10292003GL01874.
[13]陶金花, 张美根, 陈良富, 等. 一种基于卫星遥感AOT估算近地面颗粒物的方法[J]. 中国科学: 地球科学, 2013, 43(1): 143-154.
[14]Hutchison K D, Faruqui S J, Smith S. Improving correlations between MODIS aerosol optical thickness and ground-based PM<sub>2.5</sub> observations through 3D spatial analyses[J]. Atmos Environ, 2008, 42(3): 530-543.
[15]陈雷华, 余晔, 陈晋北, 等. 2001-2007年兰州市主要大气污染物污染特征分析[J]. 高原气象, 2010, 29(6): 1627-1633.
[16]Liu Y, Franklin M, Koutrakis P. Using aerosol optical thickness to predict ground-level PM<sub>2.5</sub> concentrations in the St. Louis Area: A comparison between MISR and MODIS[J]. Remote Sensing of Environment, 2007, 107(1-2): 33-44.
[17]Kumar Naresh, Chu Allen, Foster Andrew. An empirical relationship between PM<sub>2.5</sub> and aerosol optical depth in Delhi Metropolitan[J]. Atmos Environ, 2007, 41: 4492-4503.
[18]李成才, 毛节泰, 刘启汉, 等. MODIS 卫星遥感气溶胶产品在北京市大气污染研究中的应用[J]. 中国科学(D辑), 2005, 35(增刊1): 177-186.
[19]李成才, 毛节泰, 刘启汉, 等. 利用 MODIS 卫星遥感气溶胶产品研究北京及周边地区的大气污染[J]. 大气科学, 2003, 27(5): 869-880.
[20]Wang Zifeng, Chen Liangfu, Tao Jinhua, et al. Satellite-based estimation of regional particulate matter (PM) in Beijing using vertical and RH correcting method[J]. Remote Sensing of Environment, 2010, 114(1): 50-63.
[21]Liu Y, Sarnat J A, Kilaru V, et al. Estimating ground-level PM<sub>2.5</sub> in the eastern United States using satellite remote sensing[J]. Environmental Science and Technology, 2005, 39: 3269-3278.
[22]Hess M, Koepke P, Schult I. Optical properties of aerosols and clouds: The software package OPAC[J]. Bull Amer Meteor Soc, 1998, 79(5): 831-844.
[23]李成才. MODIS 遥感气溶胶光学厚度及应用于区域环境大气污染研究[D]. 北京: 北京大学物理学院, 2002.
[24]Donkelaar van A, Martin R V, Park R J. Estimating ground-level PM<sub>2.5</sub> using aerosol optical depth determined from satellite remote sensing[J]. J Geophys Res: Atmospheres, 2006, 111, D21201, doi: 10.1029/2005JD006996.
[25]Levy R C, Remer L A, Dubovik O. Global aerosol optical properties and application to moderate resolution imaging spectroradiometer aerosol retrieval over land[J]. J Geophys Res, 2007, 112, D13210, doi: 10.1029/2006JD007815.
[26]李本纲, 冉阳, 陶澍. 北京市气溶胶的时间变化与空间分布特征[J]. 环境科学学报, 2008, 28(7): 1425-1429.
[27]Dubovik O, Herman M, Holdak A, et al. Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations[J]. Atmospheric Measurement Techniques, 2011(4): 975-1018.
[28]范学花. PARASOL卫星偏振信息遥感北京地区气溶胶光学特性的研究[D]. 北京: 中国科学院大气物理研究所, 2006.