论文

新一代天气雷达降水估算的区域覆盖能力评估

  • 王红艳 ,
  • 刘黎平
展开
  • 中国气象科学研究院灾害天气国家重点实验室, 北京 100081;2. 南京信息工程大学, 南京 210044

收稿日期: 2014-04-23

  网络出版日期: 2015-12-28

基金资助

国家科技支撑计划项目(2012BAC22B00);中国气象科学研究院基本科研业务费(2011Y003)

Assessment of CINRAD Regional Coverage for Quantitative Precipitation Estimation

  • WANG Hongyan ,
  • LIU Liping
Expand
  • State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China;2. Nanjing Information of Information Science & Technology, Nanjing 210044, China

Received date: 2014-04-23

  Online published: 2015-12-28

摘要

准确分析雷达的覆盖能力是应用新一代天气雷观测数据的重要基础,本文提出依据0 ℃层高度和雷达波束阻挡来分析雷达降水估算有效覆盖范围的方法,并以浙江为例,客观评估了新一代天气雷达针对降水估算的区域覆盖能力。分别评估雷达网当前业务中默认的降水估算混合扫描方法和考虑地形影响的混合扫描方法的覆盖效果,结果表明:相对SA雷达230 km的降水估算半径,本地主汛期内有17%的区域因波束太高而不适宜于降水估算;而在适宜高度范围内的有效覆盖与波束阻挡直接相关;无论哪种方法,因波束阻挡产生的盲区都较小;而业务默认方法由于未处理波束阻挡,导致35%的降水低估风险区,浙江大部分地区都存在低估风险;而考虑波束阻挡后有效覆盖区达82%以上,且对全年绝大部分降水的区域覆盖效果都相当好。鉴于浙江雷达网良好的覆盖能力,提出改进的雷达降水估算混合扫描方法,即在应用波束阻挡的同时,以本地0 ℃层为波束高度约束,从所有仰角中提取混合扫描数据。对比分析表明,该方法不仅满足区域覆盖的要求,而且估算的降水空间分布与地面观测实况的一致性最好。

本文引用格式

王红艳 , 刘黎平 . 新一代天气雷达降水估算的区域覆盖能力评估[J]. 高原气象, 2015 , 34(6) : 1772 -1784 . DOI: 10.7522/j.issn.1000-0534.2014.00122

Abstract

Accurate analysis of coverage of weather radar is important for using CINRAD observations, and flooding is one of the main meteorological disasters in China. In this paper, a method considering terrains' occultation and according to local distribution of melting layer height is supported to assess coverage of weather radar for quantitative precipitation estimation (QPE). Taking Zhejiang province as an example, objective assessment of CINRAD regional coverage is presented respectively for CINRAD operational QPE and algorithm considering terrains' occultation to radar beam. The results are:during the flood season, 17% of the maximum covered area is invalid as the result of the limit of melting layer. And coverage capability of beam below melting layer is directly related to beam blockage, blind area is very small for both QPE regions. For default operational CINRAD QPE, 35% of the maximum covered area faces the risk of underestimation due to partial beam blockage, which covers most region of the province. When considering terrains' occultation, most of the region, more than 82%, is valid coverage, including the whole province. Regional coverage is good to most rainfall of a year too. Finally, a improved method of getting hybrid scan from all elevation cuts with both the restriction of melting layer height and beam blockage is presented, in addition to good coverage, it's QPE results agree with actual precipitation distribution best when comparing with operational CINRAD method and hybrid scan method below averaged rain top.

参考文献

[1]冯晋勤, 俞小鼎, 傅伟辉, 等. 2010年福建一次早春强降雹超级单体风暴对比分析[J]. 高原气象, 2012, 31(1):239-250.
[2]杜惠良, 钮学新, 殷坤龙, 等. 浙江省滑波、泥石流多发区气象预警研究[J]. 高原气象, 2006, 25(1), 152-l56.
[3]吴涛, 万玉发, 王珊珊. 多雷达反演参量联合的短时强降水识别方法研究[J]. 高原气象, 2012, 31(5):1393-1406.
[4]庄薇, 刘黎平, 王改利, 等. 青藏高原复杂地形区雷达估测降水方法研究[J]. 高原气象, 2013, 32(5):1224-1235,doi:10. 7522/j. issn. 1000-0534. 2012. 00118.
[5]张之贤, 张强, 赵庆云, 等. 陇东南地区短时强降水的雷达回波特征及其降水反演[J]. 高原气象, 2014, 33(2):530-538, doi:10. 7522/j. issn. 1000-0534. 2013. 00001.
[6]李薇, 刘岩, 袁野, 等. 吉林省春季层状云降水的雷达观测研究[J]. 高原气象, 2013, 32(5):1485-1491, doi:10. 7522/j. issn. 1000-0534. 2012. 00138.
[7]张之贤, 张强, 赵庆云, 等. “8·8”舟曲特大山洪泥石流灾害天气特征分析[J]. 高原气象, 2013, 32(1):290-297, doi:10. 7522/j. issn. 1000-0534. 2013. 00028.
[8]吴木贵, 张信华, 傅伟辉, 等. 2010年3月5日闽北经典超级单体风暴天气过程分析[J]. 高原气象, 2013, 32(1):250-267, doi:10. 7522/j. issn. 1000-0534. 2013. 00025.
[9]Krajewski W F, Ntelekos A A, Goska R. A GIS-based methodology for the assessment of weather radar beam blockage in mountainous regions: two examples from the US NEXRAD network[J]. Computers & Geosciences, 2006, 32(3):283-302.
[10]徐八林, 刘黎平, 王改利. 超低仰角扫描改进高山雷达降水估测[J]. 高原气象, 2011, 30(5):1337-1345.
[11]徐八林, 刘黎平, 吴昌叨. 超低仰角扫描改进雷达观测台风的探讨[J]. 高原气象, 2012, 31(1):251-257.
[12]刘鹏, 傅云飞. 利用星载测雨雷达探测结果对夏季中国南方对流和层云降水气候特征的分析[J]. 大气科学, 2010, 34(4):802-814.
[13]杜振彩, 黄荣辉, 黄刚, 等. 亚洲季风区积云降水和层云降水时空分布特征及其可能成因分析[J]. 大气科学, 2011, 35(6):993-1008.
[14]戴铁丕, 傅德胜, 姜冬梅. 零度层亮带和大气折射对雷达测定区域降水量精度的影响[J]. 南京气象学院学报, 1991, 1(7):105-112.
[15]Neyman L M. Initial comparison of WSR-88D precipitation products and rain gauge precipitation for northwestern California[J]. Western Region Tech Attachment, 1996: 96-121.
[16]Fulton R A, Breidenbach J P, Seo D J, et al. The WSR-88D rainfall algorithm[J]. Wea Forecasting, 1998, 13(2):377-395.
[17]O'Bannon T. Using a‘terrain-based'hybrid scan to improve WSR-88D precipitation estimates[C] //Preprints, 28th Conference on Radar Meteorology, Austin, TX, Amer Meteor Soc, 1997: 506-507.
[18]张亚萍, 刘钧. 雷达定量估测区域降水波束阻挡系数的计算[J]. 南京气象学院学报, 2002, 25(5):640-647.
[19]徐卫立, 陈良华, 李波. 三峡库区天气雷达拼图及降水估测系统[C] //中国水利学会2010学术年会论文集(上册), 2010.
[20]Klazura G E, Thomale J M, Kelly D S, et al. A comparison of NEXRAD WSR-88D radar estimates of rain accumulation with gauge measurements for high-and low-reflectivity horizontal gradient precipitation events[J]. J Atmos Ocea Technol, 1999, 16(11):1842-1850.
[21]Klazura G E, Imy D A. A description of the initial set of analysis products available from the NEXRAD WSR-88D system[J]. Bull Amer Meteor Soc, 1993, 74(7):1293-1311.
[22]Hardegree S, Van Vactor S, Healy K, et al. Multi-watershed evaluation of WSR-88D (NEXRAD) radar-precipitation products[C] //Proc. 1st Interagency Conference on Research in the Watersheds,2003:486-491.
[23]Maddox R A, Zhang J, Gourley J J, et al. Weather radar coverage over the contiguous United States[J]. Wea Forecasting, 2002, 17(4):927-934.
[24]National Research Council. NEXRAD panel, National Weather Service Modernization Committee. Assessment of NEXRAD coverage and associated weather services[M]. Washington D C:The National Academies Press, 1995:8-33.
[25]杨洪平, 张沛源, 陈明虎, 等. 多普勒天气雷达组网拼图有效数据区域分析[J]. 应用气象学报, 2009, 20(1):47-55.
[26]王曙东, 裴翀, 郭志梅, 等. 基于SRTM数据的中国新一代天气雷达覆盖和地形阻挡评估[J]. 气候与环境研究, 2011, 16(4):459-468.
[27]史锐, 程明虎, 崔哲虎, 等. 多普勒雷达实时反射率因子垂直廓线观测研究[J]. 气象, 2005, 31(9):39-43.
[28]杜秉玉, 高志球. 雷达反射率因子垂直廓线研究和多种遥感资料综合估计降水[J]. 南京气象学院学报, 1998, 21(4):729-736.
[29]肖艳姣, 刘黎平, 李中华, 等. 雷达反射率因子数据中的亮带自动识别和抑制[J]. 高原气象, 2010, 29(1):197-205.
[30]戴铁丕, 张培昌, 詹煜. 我国20个地区大气折射指数垂直分布的三种统计模式[J]. 南京气象学院学报, 1996, 19(4):456-463.
[31]Doviak R J, Zrnic D S. Doppler Radar & Weather Observations[M]. Pittsburgh:American Academic Press, 2014.
[32]Kucera P A, Krajewski W F, Young C B. Radar beam occultation studies using GIS and DEM technology:An example study of Guam[J]. J Atmos Ocean Technol, 2004, 21(7):995-1006.
[33]张培昌, 杜秉玉, 戴铁丕. 雷达气象学[M]. 北京:气象出版社, 2001.
[34]黄捷, 胡大璋, 仇盛柏. 中国部分地区0℃等温层高度的统计特性[J]. 电波科学学报, 1993, 8(1):57-64.
[35]石细平, 单中华, 吴宏. 浙江中部地区近几十年汛期降水演变规律分析和预报模型建立[J]. 科技导报, 2010, 28(2):96-100.
[36]吴昊旻, 杨羡敏, 姜燕敏. 浙江省夏秋季降水量时空分布特征及趋势演变规律[J]. 中国农业气象, 2011, 32(3):326-330.
[37]蔡敏, 黄燕, 吴惠娟, 等. 浙江省极端降水事件分布及其概率特征[J]. 浙江气象, 2012, 34(2):10-15.
[38]黄钰, 阮征, 葛润生. 风廓线雷达探测零度层亮带的试验研究[J]. 高原气象, 2011, 30(5):1376-1383.
[39]王德旺, 刘黎平, 仲凌志, 等. 毫米波雷达资料融化层亮带特征的分析及识别[J]. 气象, 2012, 38(6):712-721.
文章导航

/