论文

BCC-AGCM-Chem0模式对20世纪对流层臭氧变化趋势的模拟研究

  • 张芳 ,
  • 吴统文 ,
  • 张洁 ,
  • 李书博 ,
  • Wang Jun
展开
  • 中国气象局国家气候中心, 北京 100081;2. 中国气象科学研究院, 北京 100081;3. Department of Earth and Atmospheric Sciences, University of Nebraska-Lincoln, NE 68588, USA

收稿日期: 2014-05-26

  网络出版日期: 2016-02-28

基金资助

国家重点基础研究发展计划项目(2010CB951902);公益性行业科研专项(201306048)

Variations of Tropospheric Ozone in the 20th Century Simulated by BCC-AGCM-Chem0 Model

  • ZHANG Fang ,
  • WU Tongwen ,
  • ZHANG Jie ,
  • LI Shubo ,
  • WANG Jun
Expand
  • National Climate Center, China Meteorology Administration, Beijing 100081, China;2. Chinese Academy of Meteorological Sciences, Beijing 100081, China;3. Department of Earth and Atmospheric Sciences, University of Nebraska-Lincoln, NE 68588, USA

Received date: 2014-05-26

  Online published: 2016-02-28

摘要

利用IPCC第5阶段试验计划(CMIP5)整理提供的全球臭氧(O3)分析资料和全球O3和紫外线辐射数据中心(WOUDC)提供的O3台站观测资料评估了国家气候中心最新发展的全球大气化学环流模式BCC-AGCM-Chem0对对流层大气O3变化趋势的模拟能力。结果表明,BCC-AGCM-Chem0模式对对流层O3的变化趋势具有较好的模拟能力,具体表现在:(1)BCC-AGCM-Chem0模式可以较好地模拟出1871-1999年全球对流层不同高度O3浓度逐渐升高的基本特征;(2)BCC-AGCM-Chem0模式对1871-1999全球对流层O3柱浓度纬圈平均异常变化的模拟与CMIP5资料一致,北半球升高趋势明显大于南半球,且升高最大区域的中心位置和强度也与CMIP5资料一致;(3)BCC-AGCM-Chem0模式对1000~300 hPa整体O3柱浓度变化趋势模拟较好,对O3柱浓度快速上升的区域和上升速度的模拟都与CMIP5资料一致,但对低层O3柱浓度升高模拟偏强,对高层O3柱浓度变化模拟偏弱;(4)与台站观测资料对比,在对流层中低层模拟结果在亚洲Sapporo站和欧洲Hohenpeissenberg站与实际观测比较接近,并与CMIP5资料相似,均呈升高趋势。对流层中高层模式模拟的O3浓度异常存在明显的周期变化,与台站观测结果一致。

本文引用格式

张芳 , 吴统文 , 张洁 , 李书博 , Wang Jun . BCC-AGCM-Chem0模式对20世纪对流层臭氧变化趋势的模拟研究[J]. 高原气象, 2016 , 35(1) : 158 -171 . DOI: 10.7522/j.issn.1000-0534.2014.00118

Abstract

The global chemistry-general circulation model BCC-AGCM-Chem0,newly developed in Beijing Climate Center,is evaluated using the data provided by CMIP5 and WOUDC.BCC-AGCM-Chem0 can simulate the variations of tropospheric ozone well.The increasing trend of ozone concentration at different heights in the troposphere simulated by BCC-AGCM-Chem0 is in a good agreement with the CMIP5 data.BCC-AGCM-Chem0 can well capture zonal mean of concentration of ozone column anomalies in the troposphere from 1871 to 1999.Increasing trend in the Northern Hemisphere is higher than that in the Southern Hemisphere,the location and intensity of the strongest increasing trend are agree with CMIP5 data.Spatial distributions of the trend of the concentration of ozone column integrated from 1000 to 300 hPa from 1871 to 1999 are also well reproduced.In comparison with the CMIP5 data,BCC-AGCM-Chem0 overestimated the trend of the concentration of ozone column at lower troposphere,and underestimated it at higher troposphere.The ozone concentrations show increasing trends at Sapporo station in Asia and Hohenpeissenberg station in Europe at lower troposphere,the model results are closed to the ground-based data,and closed to CMIP5 data as well.In the upper and middle troposphere,ozone concentrations anomalies simulated by BCC-AGCM-Chem0 show distinct periodic variations,consistent with the ground-based data.

Key words: BCC-AGCM-Chem0; Ozone; Trend

参考文献

[1]Cionni I,Eyring V,Lamarque J F,et al.2011.Ozone database in support of CMIP5 simulations:Results and corresponding radiative forcing[J].Atmos Chem Phys,11(21):11267-11292.DOI:10.5194/acp-11-11267-2011.
[2]Collins W J,Bellouin N,Doutriaux-Boucher M,et al.2011.Development and evaluation of an Earth-System model-HadGEM2[J].Geosci Model Dev,4(4):1051-1075.DOI:10.5194/gmd-4-1051-2011.
[3]Donner L J,Wyman B L,Hemler R S,et al.2011.The dynamical core,physical parameterizations,and basic simulation characteristics of the atmospheric component of the GFDL global coupled model CM3[J].J Climate,24(13):3484-3519.DOI:http://dx.doi.org/10.1175/2011JCLI3955.1.
[4]Fioletov V E,Bodeker G E,Miller A G,et al.2002.Global and zonal total ozone variations estimated from ground-based and satellite measurements:1964-2000[J].J Geophys Res,107(D22).DOI:10.1029/2001JD001350.
[5]Horowitz L W,Walters S,Mauzerall D L,et al.2003.A global simulation of tropospheric ozone and related tracers:Description and evaluation of MOZART,version 2[J].J Geophys Res,108(D24).DOI:10.1029/2002JD002853.
[6]IPCC.2007.Climate Change 2007:The Physical Science Basis[C]//Solomon S,Qin D,Manning M,et al,eds.Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge:Cambridge University Press,36.
[7]J?ckel P,Tost H,Pozzer A,et al.2006.The atmospheric chemistry general circulation model ECHAM5/MESSy1:consistent simulation of ozone from the surface to the mesosphere[J].Atmos Chem Phys,6(12):5067-5104.DOI:10.5194/acp-6-5067-2006
[8]Koch D,Schmidt G A,Field C V,et al.2006.Sulfur,sea salt,and radionuclide aerosols in GISS ModelE[J].J Geophys Res,111,D06206.DOI:10.1029/2004JD 005550.
[9]Lamarque J F,Emmons L K,Hess P G,et al.2012.CAM-chem:description and evaluation of interactive atmospheric chemistry in the Community Earth System Model[J].Geosci Model Dev,5(2):369-411.DOI:10.5194/gmd-5-369-2012.
[10]Lamarque J F,Kyle G P.Meinshausen M,et al.2011.Global and regional evolution of short-lived radiatively-active gases and aerosols in the representative concentration pathways[J].Climatic Change,109(1):191-212.DOI:10.1007/s10584-011-0155-0.
[11]Lamarque J F,Shindell D T,Josse B,et al.2013.The Atmospheric Chemistry and Climate Model Intercomparison Project(ACCMIP):overview and description of models,simulations and climate diagnostics[J].Geosci Model Dev,6(1):179-206.DOI:10.5194/gmd-6-179-2013.
[12]Lee Y H,Adams P J.2011.A fast and efficient version of the two-moment aerosol sectional(TOMAS) global aerosol microphysics model[J].Aerosol Sci Technol,46(6):678-689.DOI:10.1080/02786826.2011.643259.
[13]Liu X,Easter R C,Ghan S J,et al.2012.Toward a minimal representation of aerosols in climate models:description and evaluation in the Community Atmosphere Model CAM5[J].Geosci Model Dev,5(3):709-739.DOI:10.5194/gmd-5-709-2012.
[14]Mahlman J D,Moxim W J,1978.Tracer simulation using a global general circulation model:Results from a midlatitude instantaneous source experiment[J].J Geophys Res,35(8):1340-1374.
[15]Marenco A,Gouget H,Nédélec P,et al.1994.Evidence of a long-term increase in tropospheric ozone from Pic du Midi data series:consequences:positive radiative forcing[J].J Geophys Res,99(D8),16617-16632.DOI:10.1029/94jd00021.
[16]Naik V,Horowitz L W,Fiore A M,et al.2013.Impact of preindustrial to present-day changes in short-lived pollutant emissions on atmospheric composition and climate forcing[J].J Geophys Res Atmos,118(14):8086-8110.DOI:10.1002/jgrd.50608
[17]Oman L D,Ziemke J R,Douglass A R,et al.2011.The response of tropical tropospheric ozone to ENSO[J].Geophys Res Lett,38(13),L13706.DOI:10.1029/2011GL047865.
[18]Scinocca J F,McFarlane N A,Lazare M,et al.2008.Technical Note:The CCCma third generation AGCM and its extension into the middle atmosphere[J].Atmos Chem Phys,8(23):7055-7074.DOI:10.5194/acp-8-7055-2008.
[19]Shindell D T,Pechony O,Voulgarakis A,et al.2013.Interactive ozone and methane chemistry in GISS-E2 historical and future climate simulations[J].Atmos Chem Phys,13(5),2653-2689.DOI:10.5194/acp-13-2653-2013
[20]Solomon S.1999.Stratospheric ozone depletion:A review of concepts and history[J].Rev Geophys,37(3):275-316.
[21]Stevenson D S,Doherty R M,Sanderson M G,et al.2004.Radiative forcing from aircraft NOX emissions:mechanisms and seasonal dependence[J].J Geophys Res,109,D17307.DOI:10.1029/2004JD004759.
[22]Stocker T F,Qin D,Plattner G-K,et al.2013.Technical Summary.In:Climate Change 2013:The Physical Science Basis.Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[R].Cambrideg,United Kingdom and New York,NY,USA:Cambridge University Press,55.
[23]Szopa S,Balkanski Y,Schulz M,et al.2013.Aerosol and ozone changes as forcing for climate evolution between 1850 and 2100[J].Clim Dyn,40(9):2223-2250.DOI:10.1007/s00382-012-1408-y.
[24]Volz A,Kley D.1988.Evaluation of the Montsouris series of ozone measurements made in the 19<sup>th</sup> century[J].Nature,332:240-242.
[25]Watanabe S,Hajima T,Sudo K,et al.2011.MIROC-ESM 2010:model description and basic results of CMIP5-20c3m experiments[J].Geosci Model Dev,4(4):845-872.DOI:10.5194/gmd-4-845-2011.
[26]Wu T W.2012.A mass-flux cumulus parameterization scheme for large-scale models:description and test with observations[J].Climate Dyn,38(3):725-744.DOI:10.1007/s00382-011-0995-3.
[27]Wu T W,Yu R C,Zhang F.2008.A modified dynamic framework for atmospheric spectral model and its application[J].J Atmos Sci,65(7):2235-2253.
[28]Wu T W,Yu R C,Zhang F,et al.2010.The Beijing Climate Center atmospheric general circulation model:description and its performance for the present-day climate[J].Climate Dyn,34(1):123-147.DOI:10.1007/s00382-008-0487-2.
[29]Zeng G,Morgenstern O,Braesicke P,et al.2010.Impact of stratospheric ozone recovery on tropospheric ozone and its budget[J].Geophys Res Lett,37(9),L09805.DOI:10.1029/2010GL042812.
[30]Zeng G,Pyle J A,Young P J.2008.Impact of climate change on tropospheric ozone and its global budgets[J].Atmos Chem Phys,8(2):369-387.DOI:10.5194/acp-8-369-2008.
[31]陈闯,田文寿,田红瑛,等.2012.青藏高原东北侧臭氧垂直分布与平流层-对流层物质交换[J].高原气象,31(2):295-303.Chen Chuang,Tian Wenshou,Tian Hongying,et al,2012.Vertical distribution of ozone and stratosphere-troposphere exchanges on the northeastern side of Tibetan Plateau[J].Plateau Meteor,31(2):295-303.
[32]陈月娟,施春华.2005.从HALOE资料看青藏高原上空HCI分布及其与O<sub>3</sub>的关系[J].高原气象,24(1):1-8.Chen Yuejuan,Shi Chunhua.2005.Study on HCl distribution and its relation to ozone over Qinghai-Xizang Plateau using HALOE data[J].Plateau Meteor,24(1):1-8.
[33]李书博,吴统文,张洁,等.2015.BCC-AGCM-Chem0模式对20世纪全球O<sub>3</sub>气候平均态及季节变化特征的模拟研究[J].高原气象,34(6):1601-1615.Li Shubo,Wu Tongwen,Zhang Jie,et al.2015.Simulation study about climatological basic state and seasonal variations of global O<sub>3</sub> in the 20th century[J].Plateau Meteor,34(6):1601-1615.DOI:10.7522/j.issn.1000-0534.2014.00119.
[34]王卫国,梁俊平,王颢樾,等.2010.青藏高原及附近区域穿越对流层顶的质量和臭氧通量研究[J].高原气象,29(3):554-562.Wang Weiguo,Liang Junping,Wang Haoyue,et al.2010.Comparative study on mass and ozone fluxes cross tropopause over Qinghai-Xizang Plateau and its surrounding areas[J].Plateau Meteor,29(3):554-562.
[35]周任君,陈月娟,毕云,等.2008.青藏高原上空气溶胶含量的分布特征及其与臭氧的关系[J].高原气象,27(3):500-508.Zhou renjun,Chen Yuejuan,Bi Yun,et al.2008.Aerosol distribution over the Qinghai-Xizang Plateau and its relationship with ozone[J].Plateau Meteor,27(3):500-508.
[36]周顺武,杨双艳,张人禾,等.2012.近30年青藏高原臭氧总量亏损的可能原因及其与对流层顶高度的联系[J].高原气象,31(6):1471-1478.Zhou Shunwu,Yang Shuangyan,Zhang Renhe,et al.2012.Possible causes of total ozone depletion over the Qinghai-Xizang Plateau and its relation to tropopause height in recent 30 years[J].Plateau Meteor,31(6):1471-1478.
[37]周秀骥,罗超,李维亮,等.1995.中国地区臭氧总量变化与青藏高原低值中心[J].科学通报,40(15):1396-1398.Zhou Xiuji,Luo Chao,Li Weiliang,et al.1995.Change of gross ozone value in China and low value center of ozone over Tibetan Plateau[J].Chinese Science Bulletin,40(15):1396-1398.
文章导航

/