在WRF模式的三维动力框架和同一种外强迫下,基于大涡模拟结果对Yonsei University(YSU)和Mellor-Yamada-Janjic(MYJ)边界层参数化方案进行了评估。模式初始场由一个探空观测给定,模式的外强迫为观测得到随时间变化的地面感热、潜热通量及辐射传输模式得到的辐射冷却率。通过显式解析边界层的大涡模拟试验和采用边界层参数化方案的模拟试验结果表明,与大涡模拟结果相比,YSU方案模拟的混合偏强,MYJ方案偏弱;YSU方案模拟的边界层高度偏高,边界层内偏暖、偏干;MYJ方案模拟的边界层高度偏低,边界层内偏冷、偏湿。
The performance of two PBL schemes(YSU and MYJ) is evaluated by the large-eddy simulation(LES) within the same three-dimensional ARW dynamic framework.The model is initialized with a horizontally homogeneous sounding data set upon which a specified diurnal heat flux forcing and radiative cooling rate are imposed.The unique aspects in the approach are the employment of large-eddy simulations as a benchmark and highly idealized experimental design.Our approach is much easier to isolate the errors associated with a particular physical parameterization tested than that by using real-data simulation.Two group simulation test carried on,a group using explicit resolved boundary layer scheme(LES) with 50 meters horizontal resolution,a group using boundary layer parameterization scheme with 1000 meters horizontal resolution.Analysis of potential temperature and water vapor mixing ratio suggests that YSU over-predicts the mixing showing a higher PBL top with warmer,drier PBL structure than those from the LES,and MYJ under-predicts the mixing having a lower PBL top with colder,moister PBL structure.
[1]Caughey S J,Palmer S G.1979.Some aspects of turbulence structure through the depth of the convective boundary layer[J].Quart J Roy Meteor Soc,105(446):811-827.
[2]Deardorff J W.1972.Numerical investigation of neutral and unstable planetary boundary layers[J].J Atmos Sci,29(1):91-115.
[3]Grabowski W W,Bechtold P,Cheng A,et al.2006.Daytime convective development over land:A model intercomparison based on LBA observations[J].Quart J Roy Meteor Soc,132(615):317-344.
[4]Holt T,Raman S.1988.A review and comparative evaluation of multilevel boundary layer parameterizations for first-order and turbulent kinetic energy closure schemes[J].Rev Geophys,26(4):761-780.
[5]Hong S Y,Noh Y,Dudhia J.2006.A new vertical diffusion package with an explicit treatment of entrainment processes[J].Mon Wea Rev,134(9):2318-2341.
[6]Hong S Y,Pan H L.1996.Nonlocal boundary layer vertical diffusion in a medium-range forecast model[J].Mon Wea Rev,124(10):2322-2339.
[7]Hu X M,Nielsen-Gammon J W,Zhang F.2010.Evaluation of three planetary boundary layer schemes in the WRF model[J].J Appl Meteor Climatol,49(9):1831-1844.
[8]Janji? Z I.1994.The step-mountain eta coordinate model:Further developments of the convection,viscous sublayer,and turbulence closure schemes[J].Mon Wea Rev,122(5):927-945.
[9]Khairoutdinov M,Randall D.2006.High-resolution simulation of shallow-to-deep convection transition over land[J].J Atmos Sci,63(12):3421-3436.
[10]Lang S,Tao W K,Simpson J,et al.2007.Improving simulations of convective systems from TRMM LBA:Easterly and westerly regimes[J].J Atmos Sci,64(4):1141-1164.
[11]Li Y,Zipser E J,Krueger S K,et al.2008.Cloud-resolving modeling of deep convection during KWAJEX.Part I:Comparison to TRMM satellite and ground-based radar observations[J].Mon Wea Rev,136(7):2699-2712.
[12]Mellor G L,Yamada T.1982.Development of a turbulence closure model for geophysical fluid problems[J].Rev Geophy Space Phys,20(4):851-875.
[13]Moeng C H,Dudhia J,Klemp J,et al.2007.Examining two-way grid nesting for large eddy simulation of the PBL using the WRF model[J].Mon Wea Rev,135(6):2295-2311.
[14]Moeng C H.1984.A large-eddy simulation model for the study of planetary boundary-layer turbulence[J].J Atmos Sci,41(13):2052-2062.
[15]Noh Y,Cheon W G,Hong S Y,et al.2003.Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data[J].Bound-Layer Meteor,107(2):401-427.
[16]Pleim J E.2007.A combined local and nonlocal closure model for the atmospheric boundary layer.Part I:Model description and testing[J].J Appl Meteor Climatol,46(9):1383-1395.
[17]Skamarock W C,Klemp J B,Dudhia J,et al.2008.A description of the advanced research WRF version 3[R].National Center for Atmospheric Research Boulder Co Mesoscale and Microscale Meteorology Div.
[18]Stull R B.1984.Transilient turbulence theory.Part I:The concept of eddy-mixing across finite distances[J].J Atmos Sci,41:3351-3367.
[19]Stull R B.1991.边界层气象学导论(译)[M].杨长新译.北京:气象出版社,1-21.Stull R B. 1991.An introduction to boundary layer meteorology[M].translated by Yang Changxin.Beijing:China Meteorological Press,1-21.
[20]Troen I B,Mahrt L.1986.A simple model of the atmospheric boundary layer; sensitivity to surface evaporation[J].Bound-Layer Meteor,37(1-2):129-148.
[21]Van Der Hoven I.1957.Power spectrum of horizontal wind speed in the frequency range from 0.0007 to 900 cycles per hour[J].J Meteor,14(2):160-164.
[22]Wang Wei,Cindy Bruyère,Michael Duda,et al.2012.ARW version 3 modeling system user's guide[Z].NCAR Tech Note,384.
[23]蔡旭晖,陈家宜.1995.一个对流边界层大涡模式的建立与调试[J].大气科学,19(4):415-421.Cai Xuhui,Chen Jiayi.1995.A large eddy simulation model of convective boundary layer[J].Chinese J Atmos Sci,19(4):415-421.
[24]江川,沈学顺.2013.基于大涡模拟评估GRAPES模式对对流边界层的模拟性能[J].气象学报,71(5):879-890.Jiang Chuan,Shen Xueshun.2013.Assessment of the simulation performance of GRAPES model on the convective boundary layer based on the large eddy simulation[J].Acta Meteor Sinica,71(5):879-890.
[25]江川.2013.基于大涡模拟评估GRAPES模式对对流边界层的模拟性能[D].北京,中国气象科学研究院.Jiang Chuan.2013.Assessment of the performance of GRAPES model on the convective boundary layer based on the large eddy simulation[D].Beijing:Chinese Academy of Meteorological Sciences.
[26]蒋维楣,苗世光.2004.大涡模拟与大气边界层研究-30年回顾与展望[J].自然科学进展,14(1):11-19.Jiang Weimei,Miao Shiguang.2004.Review and prospect of thirty years of large eddy simulation and atmospheric boundary layer study[J].Progress in Natural Science,14(1):11-19.
[27]刘萱.2012.不同边界层闭合参数化方案的对比数值实验研究[D].兰州:兰州大学.Liu Xuan.2012.A contrastive study of numerical experiments of different boundary layer parameterization[D].Lanzhou:Lanzhou University,2012.
[28]邱贵强,李华,张宇,等.2013.高寒草原地区边界层参数化方案的适用性评估[J].高原气象,32(1):46-55.Qiu Guiqiang,Li Hua,Zhang Yu,et al.2013.Applicability research of planetary boundary layer parameterization scheme in WRF model over the Alpine grassland area[J].Plateau Meteor,32(1):46-55.DOI:10.7522/j.issn.1000-0534.2013.00006.
[29]石春娥,李耀孙,杨军,等.2015.MM5和WRF对中国东部地区冬季边界层模拟效果比较[J].高原气象,34(2):389-400.Shi Chune,Li Yaosun,Yang Jun,et al.2015.Comparison of simulations on winter sounding profiles in PBL in East China between WRF and MM5[J].Plateau Meteor,34(2):389-400.DOI:10.7522/j.issn.1000-0534.2013.00206.
[30]涂静.2011.黄东海大气边界层高度时空变化特征[D].青岛:中国海洋大学.Tu Jing.2011.Temporal and spatial variation of atmospheric boundary layer height(ABLH) over the Yellow-East China sea[D].Qingdao:Ocean University of China.
[31]王腾蛟,张镭,胡向军,等.2013.WRF模式对黄土高原丘陵地形条件下夏季边界层结构的数值模拟[J].高原气象,32(5):1261-1271.Wang Tengjiao,Zhang Lei,Hu Xiangjun,et al.2013.Numerical simulation of summer boundary layer structure over undulating topography of loess plateau simulated by WRF model[J].Plateau Meteor,32(5):1261-1271.DOI:10.7522/j.issn.1000-0534.2012.00121.
[32]王颖,张镭,胡菊,等.2010.WRF模式对山谷城市边界层模拟能力的检验及地面气象特征分析[J]. 高原气象,29(6):1397-1407.Wang Ying,Zhang Lei,Hu ju,et al.2010.Verification of WRF simulation capacity on PBL characteristic and analysis of surface meteorological characteristic over complex terrain[J]. Plateau Meteor,29(6):1397-1407.
[33]杨玉华,陈葆德,王斌,等.2015.背景场云凝结核浓度对理想热带气旋强度的影响[J].高原气象,34(5):1379-1390.Yang Yuhua,Chen Baode,Wang Bin,et al.2015.Numerical study of background cloud condensation nuclei effects on the intensity of idealized tropical cyclone[J].Plateau Meteor,34(5):1379-1390.DOI:10.7522/j.issn.1000-0534.2014.00095.
[34]张碧辉,刘树华,Liu Heping,等.2012.MYJ和YSU方案对WRF边界层气象要素模拟的影响[J].地球物理学报,55(7):2239-2248.Zhang B H,Liu S H,Liu Heping,et al.2012.The effect of MYJ and YSU schemes on the simulations of boundary layer meteorological factors of WRF[J].Chinese J Geophys,55(7):2239-2248.DOI:10.6038/j.issn.0001-5733.2012.07.010.
[35]周强,李国平.2013.边界层参数化方案对高原低涡东移模拟的影响[J].高原气象,32(2):334-344.Zhou Qiang,Li Guoping.2013.Impact of the different boundary layer parameterization schemes on numerical simulation of plateau vortex moving eastward[J].Plateau Meteor,32(2):334-344.DOI:10.7522/j.issn.1000-0534.2012.00033.