论文

那曲地区两种空间尺度感热通量的对比分析

  • 孙根厚 ,
  • 胡泽勇 ,
  • 王介民 ,
  • 刘火霖 ,
  • 谢志鹏 ,
  • 蔺筠 ,
  • 黄芳芳
展开
  • 中国科学院寒区旱区环境与工程研究所寒旱区陆面过程与气候变化重点实验室, 兰州 730000;2. 中国科学院大学, 北京 100049;3. 中国科学院青藏高原地球科学卓越创新中心, 北京 100101

收稿日期: 2015-04-24

  网络出版日期: 2016-04-28

基金资助

国家自然科学基金项目(91537101,91337212,41175068);国家重点基础研究发展计划(2012CB026101);公益性行业(气象)科研专项(GYHY201406001)

Comparison Analysis of Sensible Heat Fluxes at Two Spatial Scales in Naqu Area

  • SUN Genhou ,
  • HU Zeyong ,
  • WANG Jiemin ,
  • LIU Huolin ,
  • XIE Zhipeng ,
  • LIN Yun ,
  • HUANG Fangfang
Expand
  • Key Laboratory for Land Process and Climate Change in Cold and Arid Regions, Cold and Arid Region Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China;2. University of Chinese Academy of Sciences, Beijing 100049, China;3. CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China

Received date: 2015-04-24

  Online published: 2016-04-28

摘要

利用中国科学院那曲高寒气候环境研究观测站那曲/BJ观测点2010年涡动相关仪(EC)和大孔径闪烁仪(LAS)数据,MODIS的地表温度(LST)和归一化植被指数(NDVI)产品,结合印痕方法分析了由EC和LAS数据计算得到的感热通量的差异及造成这种差异的可能原因,研究了两种空间尺度下地表温度和土壤含水量对感热通量的影响。结果表明:干季和雨季时,EC与LAS的感热通量(H_EC和H_LAS)总体而言具有较好的一致性,其差异的主要原因是风向造成印痕差异;7月的感热通量与净辐射、风向的时间序列分析表明,云遮蔽导致的净辐射空间分布不均匀是造成H_EC和H_LAS差异的另一个重要原因;EC和LAS的印痕加权LST平均值与两者感热通量的统计分析表明,印痕内加权LST越高,感热通量越大;对雨季时的EC和LAS印痕内加权NDVI平均值表明,印痕加权NDVI越大,感热通量与净辐射之比越小;EC和LAS两种通量结果分析表明,空间尺度对藏北地区半小时尺度和月尺度感热通量结果都有较大影响。

本文引用格式

孙根厚 , 胡泽勇 , 王介民 , 刘火霖 , 谢志鹏 , 蔺筠 , 黄芳芳 . 那曲地区两种空间尺度感热通量的对比分析[J]. 高原气象, 2016 , 35(2) : 285 -296 . DOI: 10.7522/j.issn.1000-0534.2015.00088

Abstract

In this study, the comparison analysis on the differences in sensible heat fluxes calculated with eddy covariance (EC) data and large aperture scintillometer (LAS) data of Naqu Station for Plateau Climate and Environment, Chinese Academy of Sciences and the analysis on the possible reasons for such differences are made based on the automatic weather data and the land surface temperature (LST) and normalized differences vegetation index (NDVI) of MODIS. The results show that sensible heat fluxes calculated with LAS data (H_LAS) agree reasonably well with those with EC data (H_EC) both in rain season and dry season. One reason for the differences between H_EC and H_LAS is the differences in their footprints which are caused by wind directions. A detailed analysis of the H_EC and H_LAS changing with net radiation and wind directions in July, 2010 indicates the spatial variability in net radiation in EC and LAS footprint which is created by cloud covers contributes greatly to the differences in the sensible heat fluxes at EC and LAS spatial scales. A statistical relationship between footprint-weighted averages of LST in EC and LAS footprints and their sensible fluxes reveals that high LST leads to large sensible fluxes. A statistical relationship between footprint-weighted averages of NDVI in EC and LAS footprints and the ration of H_EC and H_LAS to net radiations in rain season supported the analysis that the high NDVI leads to the small ratio of sensible heat fluxes to net radiations. The half-hour and monthly-averaged daily variations of sensible heat fluxes at EC and LAS spatial scales demonstrate that surface fluxes in Naqu are influenced by spatial scales, which should be kept in mind when surface fluxes were used to validate fluxes retrieving from remote sensing or from numerical models.

参考文献

[1]Andreas E L. 1988. Estimating Cn2 over snow and sea ice from meteorological quantities,1988 Orlando Technical Symposium[J]. International Society for Optics and Photonics,5(4):481-495.
[2]Bai J,Jia L,Liu S,et al. 2015. Characterizing the footprint of Eddy Covariance System and large aperture scintillometer measurements to validate satellite-based surface fluxes[J]. Geoscience and Remote Sensing Letters,IEEE,12(5):943-947.
[3]Chen X,Su Z,Ma Y,et al. 2013a. Estimation of surface energy fluxes under complex terrain of Mt. Qomolangma over the Tibetan Plateau[J]. Hydrology and Earth System Sciences. 17(4):1607-1618.
[4]Chen X,Su Z,Ma Y,et al. 2013b. An improvement of roughness height parameterization of the surface energy balance system (SEBS) over the Tibetan Plateau[J]. J Appl Meteor Climatol,52(3):607-622.
[5]Evans J,McNeil D,Finch J,et al. 2012. Determination of turbulent heat fluxes using a large aperture scintillometer over undulating mixed agricultural terrain[J]. Agricultural and Forest Meteorology,166:221-233.
[6]Ezzahar J,Chehbouni A,Hoedjes J,et al. 2007. On the application of scintillometry over heterogeneous grids[J]. J Hydrol,334(3):493-501.
[7]Gao Z,Wang J,Ma Y,et al. 2000a. Study of roughness lengths and drag coefficients over Nansha Sea Region,gobi,desert,oasis and Tibetan Plateau[J]. Physics and Chemistry of the Earth:Hydrology,Oceans and Atmosphere,25(2):141-145.
[8]Gao Z,Wang J,Ma Y,et al. 2000b. Calculation of near-surface layer turbulent transport and analysis of surface thermal equilibrium features in Nagqu of Tibet[J]. Physics and Chemistry of the Earth:Hydrology,Oceans and Atmosphere,25(2):135-139.
[9]Hirose N,Koike T,Ishidaira H. 2002. Study on spatially averaged evaporation under soil moisture heterogeneity affected by permafrost micro-topography[J]. J Meteor Soc Japan,80(2):191-203.
[10]Hoedjes J,Chehbouni A,Ezzahar J,et al. 2007. Comparison of large aperture scintillometer and eddy covariance measurements:Can thermal infrared data be used to capture footprint-induced differences?[J]. J Hydrometeor,8(2):144-159.
[11]Hsieh C,Katul G,Chi T. 2000. An approximate analytical model for footprint estimation of scalar fluxes in thermally stratified atmospheric flows[J]. Advances in Water Resources,23(7):765-772.
[12]Jia Z,Liu S,Xu Z,et al. 2012. Validation of remotely sensed evapotranspiration over the Hai River Basin,China[J]. J Geophys Res,117(D13). DOI:10.1029/2011JD017037.
[13]Kormann R,Meixner F,2001. An analytical footprint model for non-neutral stratification[J]. Bound-Layer Meteor,99(2):207-224.
[14]Liu S,Hu G,Lu L,et al. 2007. Estimation of regional evapotranspiration by TM/ETM+ Data over heterogeneous surfaces[J]. Photogrammetric Engineering & Remote Sensing,73(10):1169-1178.
[15]Liu S,Xu Z,Wang W,et al. 2011. A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem[J]. Hydrology and Earth System Sciences,15(4):1291-1306.
[16]Liu S,Xu Z,Zhu Z,et al. 2013. Measurements of evapotranspiration from eddy-covariance systems and large aperture scintillometers in the Hai River Basin,China[J]. J Hydrol,487:24-38.
[17]Ma Y,Wang Y,Wu R,et al. 2009. Recent advances on the study of atmosphere-land interaction observations on the Tibetan Plateau[J]. Hydrology and Earth System Sciences,13(7):1103-1111.
[18]Marx A,Kunstmann H,Schüttemeyer D,et al. 2008. Uncertainty analysis for satellite derived sensible heat fluxes and scintillometer measurements over Savannah environment and comparison to mesoscale meteorological simulation results[J]. Agricultural and Forest Meteorology,148(4):656-667.
[19]Meijninger W,Hartogensis O,Kohsieh W,et al,2002. Determination of area-averaged sensible heat fluxes with a large aperture scintillometer over a heterogeneous surface-flevoland field experiment[J]. Boud-Layer Meteor,105:37-62.
[20]Randow C,Kruijt B,Holtslag A,et al. 2008. Exploring eddy-covariance and large aperture scintillometer measurements in an Amazonian Rain Forest[J]. Agricultural and Forest Meteorology,148(4):680-690.
[21]Samain B,Simons G,Voogt M,et al. 2012. Consistency between hydrological model,large aperture scintillometer and remote sensing based evapotranspiration estimates for a heterogeneous catchment[J]. Hydrology and Earth System Sciences,16(7):2095-2107.
[22]Song L,Liu S,Zhang X,et al. 2015. Estimating and validating soil evaporation and crop transpiration during the HiWATER-MUSOEXE[J]. Geoscience and Remote Sensing Letters,IEEE,12(2):334-338.
[23]Song M,Isikawa H,Yang K,et al. 2007. Estimation of the regional vaporative fraction over the Tibetan Plateau Area by using Landsat-7 ETM Data and the field observations[J]. J Meteor Soc Japan,85:295-309.
[24]Song Y,Wang J,Yang K,et al. 2012. A revised surface resistance parameterisation for estimating latent heat flux from remotely sensed data[J]. International Journal of Applied Earth Observation and Geoinformation,17:76-84.
[25]Tang R,Li Z,Jia Y,et al. 2011. An intercomparison of three remote sensing-based energy balance models using large aperture scintillometer measurements over a wheat-corn production region[J]. Remote Sens Environ,115(12):3187-3202.
[26]Ward H,Evans J,Grimmond C. 2014. Multi-scale sensible heat fluxes in the suburban environment from large-aperture scintillometry and eddy covariance[J]. Bound-Layer Meteor,152(1):65-89.
[27]Xu T,Liu S,Liang S,et al. 2011. Improving predictions of water and heat fluxes by assimilating MODIS land surface temperature products into the common land model[J]. J Hydrometeor,12(2):227-244.
[28]Xue B,Wang L,Yang K,et al. 2013. Modeling the land surface water and energy cycles of a mesoscale watershed in the central Tibetan Plateau during summer with a distributed hydrological model[J]. J Geophys Res,118(16):8857-8868.
[29]Yang K,Koike T,Yang D. 2003. Surface flux parameterization in the Tibetan Plateau[J]. Bound-Layer Meteor,106(2):245-262.
[30]郝小翠,张强,岳平,等. 2013. 黄土高原大孔径闪烁仪观测特征量 T'的研究[J]. 高原气象,32(2):665-672. Hao Xiaocui,Zhang Qiang,Yue Ping,et al. 2013. Study of characteristic quantity T' by large aperture scintillometer over Chinese Loess Plateau[J]. Pleateau Meteor,32(3):665-672. DOI:10.7522/j.issn. 1000-0534.2012.00063.
[31]郝小翠,张强,岳平,等. 2014,黄土高原LAS观测感热通量的物理影响因素[J]. 高原气象,33(4):957-966. Hao Xiaocui Zhang Qiang,Yue Ping,et al. 2014. Analysis of physical factor of sensible heat flux by LAS over Loess Plateau[J]. Pleateau Meteor,33(4):957-966. DOI:10.7522/j.issn. 1000-0534.2013.00042.
[32]李茂善,杨耀先,马耀明,等. 2012. 纳木错 (湖) 地区湍流数据质量控制和湍流通量变化特征[J]. 高原气象, 31(4):875-884. Li Maoshan,Yang Yaoxian,Ma Yaoming,et al. 2012. Analysis on turbulence data control and distribution of surface energy flux in Namco area of Tibetan Plateau[J]. Pleteau Meteor,31(4):875-884.
[33]李新,李小文,李增元,等. 2012. 黑河综合遥感联合试验研究进展:概述[J]. 遥感技术与应用[J]. 27(5):637-649. Li Xin,Li Xiaowen,Li Zengyuan,et al. 2012. Processes on the watershed allied telemetry experimental research (WATER)[J]. Remote Sensing Technology and Application,27(5):637-649.
[34]刘火霖,胡泽勇,杨耀先,等. 2015. 青藏高原那曲地区冻融过程的数值模拟研究[J]. 高原气象,34(3):676-683. Liu Huolin,Hu Zeyong,Yang Yaoxian,et al. 2015. Simulation of the freezing-thawing processes at Nagqu area over Qinghai-Xizang Plateau[J]. Plateau Meteor,34(3):676-683. DOI:10.7522/j.issn. 1000-0534.2015.00021.
[35]马耀明,胡泽勇,田立德,等. 2014,青藏高原气候系统变化及其对东亚区域的影响与机制研究进展[J]. 地球科学进展. 29(2):207-215. Ma Yaoming. Hu Zeyong,Tian Lide,et al. 2014. Study progresses of the Tibetan Plateau climate sysytem change and mechanism of its impact on East Asia[J]. Adv Earth Sci,29(2):207-215. DOI:10.11867/j.issn. 1001-8166.2014.02.0207.
[36]朱志鹍,马耀明,胡泽勇,等. 2015. 青藏高原那曲高寒草甸生态系统CO<sub>2</sub>净交换及其影响因子[J]. 高原气象,34(5):1217-1233. Zhu Zhikun,Hu Zeyong,Ma Yaoming,et al. 2015. Net ecosystem carbon dioxide exchange in alpine meadow of Nagchu region over Qinghai-Xizang Plateau[J]. Plateau Meteor,34(5):1217-1233. DOI:10.7522/j.issn. 1000-0534.2014.00135.
文章导航

/