论文

基于MODIS遥感产品估算西北半干旱区的陆面蒸散量

  • 王丽娟 ,
  • 郭铌 ,
  • 杨启东 ,
  • 王介民 ,
  • 沙莎 ,
  • 胡蝶
展开
  • 中国气象局兰州干旱气象研究所/甘肃省干旱气候变化与减灾重点实验室/中国气象局干旱气候变化与减灾重点实验室, 兰州 730020;2. 云南大学资源环境与地球科学学院, 昆明 650091;3. 中国科学院寒区旱区环境与工程研究所, 兰州 730000

收稿日期: 2014-05-27

  网络出版日期: 2016-04-28

基金资助

公益性行业(气象)科研专项(GYHY201506001-5,GYHY201006023);国家自然科学基金项目(41375019)

Land Surface Evapotranspiration Estimated based on MODIS Remote Sensing Products over the Semi-Arid Northwest China

  • WANG Lijuan ,
  • GUO Ni ,
  • YANG Qidong ,
  • WANG Jiemin ,
  • SHA Sha ,
  • HU Die
Expand
  • Gansu Key Laboratory of Arid Climatic Change and Reducing Disater/Key Laboratory of Arid Climatic Change and Disaster Reduction of China Meteorological Administration/Institute of Arid Meteorology, China Meteorological Administration, Lanzhou 730020, China;2. Department of Atmospheric Sciences, Yunnan University, Kunming 650091, China;3. Cold and Arid Regions Environmental and Engineering Research Institute, China Academy of Sciences, Lanzhou 730000, China

Received date: 2014-05-27

  Online published: 2016-04-28

摘要

在中分辨率成像光谱仪(MODIS)数据产品的基础上,使用MODIS地表温度替代净辐射及蒸散模型中的气温进行计算,并利用兰州大学半干旱气候与环境监测站(SACOL)的实测资料对模型进行修正。将模型修正前后估算的SACOL站和定西干旱气象与生态环境试验站(定西站)的净辐射和蒸散与实测值进行对比。结果表明,MODIS的白天\夜间地表温度与日最高\最低气温之间具有很好的相关性,相关系数都超过0.75,使用其替代气温进行净辐射和蒸散的估算是可行的,且各参数具有明确的物理意义。通过比较模型估算值与地面通量观测站的实测值发现:使用实测资料对模型进行修正后,净辐射和蒸散的估算结果较修正前有了明显的改善。净辐射估算值与实测值之间的均方根误差减小到25.93 W·m-2;修正后模型估算的SACOL站和定西站蒸散更接近于实测值,均方根误差分别减小到0.81 mm和0.68 mm,相关系数都增加到0.6以上,通过了0.01显著性水平检验;且遥感估算的区域蒸散分布特征与地表覆盖特征相符,说明利用修正后模型估算的净辐射和地表蒸散是合理的,由于这种估算净辐射和蒸散的模型不需要任何实时地面资料的辅助,可以为观测资料缺乏地区的辐射及蒸散研究提供一种新的思路。

本文引用格式

王丽娟 , 郭铌 , 杨启东 , 王介民 , 沙莎 , 胡蝶 . 基于MODIS遥感产品估算西北半干旱区的陆面蒸散量[J]. 高原气象, 2016 , 35(2) : 375 -384 . DOI: 10.7522/j.issn.1000-0534.2014.00158

Abstract

Based on the Moderate-Resolution Imaging Spectroradiometer (MODIS) products, the air temperature in the net radiation and evaportranspiration models were instead by the land surface temperature, and the models were modified using the observed data of Semi-Arid Climate and Environment Observatory of Lanzhou University(SACOL). Then the net radiation and evapotranspiration estimated by original and modified models were compared with the observed values in SACOL and Dingxi Arid Meteorology and Ecological Environment Experimental Station (Dingxi station). The results showed that:the MODIS daytime/nighttime land surface temperature was highly correlated with the observed daily maximum\minimum air temperature, and the correlation coefficients were greater than 0.75, therefore the air temperature in the model can be instead by land surface temperature, and using this method all the parameters in the model have specific physical meanings. Compared to the observations, the modified model improved the accuracy of net radiation and evapotranspiration when used the observed data to modify the model. The root mean square errors of the net radiation by modified models reduced to 25.93 W·m-2. The evapotranspiration of SACOL and Dingxi stations estimated by the modified model was closer to the measured data, and the root mean square errors were reduced to 0.81 mm and 0.68 mm, respectively, and the correlation coefficients were greater than 0.6, and all passed the 0.01 level of significance test. Furthermore, the modified model estimated regional evapotranspiration distributions were consistent with the actual land covers of the research area, which implied that the net radiation and evapotranspiration estimated by the modified model was reasonable. Because the modified model only used the remote sensing data without any real-time ground observation, it was a new idea to study the radiation and evapotranspiration in the area where lack of ground measured data.

参考文献

[1]Bastiaanssen W G M,Menenti M,Feddes R A. 1998a. The surface energy balance algorithm for land(SEBAL):Part 1. Formulation[J]. J Hydrol,212-213:198-213.
[2]Bastiaanssen W G M,Pelgrum H,Wang J. 1998b. The surface energy balance algorithm for land(SEBAL):Part 2. Validation[J]. J Hydrol,212-21:212-229.
[3]Detto M,Montaldo N,Albertson J D,et al. 2006. Soil moisture and vegetation controls on evapotranspiration in a heterogeneous Mediterranean ecosystem on Sardinia Italy[J]. Water Resour Res,42(8):W08419. DOI:10.1029/2005WR004693.
[4]Gu L,Meyers T,Pallardy S G,et al. 2006. Direct and indirect effects of atmospheric conditions and soil moisture on surface energy partitioning revealed by a prolonged drought at a temperate forest site[J]. J Geophys Res:Atmospheres,111(D16):D16102. DOI:10.1029/2006JD007161.
[5]Hatfield J L. 1983. Evapotranspiration obtained from remote sensing methods[J]. Advances in Irrigation,2:395-416.
[6]Huang J,Zhang W,Zuo J,et al. 2008. An overview of the semi-arid climate and environment research observatory over the Loess Plateau[J]. Adv Atmos Sci,25:906-921.
[7]Huang J,Fu Q,Zhang W,et al. 2010. Dust and black carbon in seasonal snow across Northern China[J]. Bull Amer Meteor Soc,92(2):175. DOI:10.1175/2010BAMS3064.1.
[8]Jackson R D,Reginato R J,Idso S B. 1977. Wheat canopy temperature:a practical tool for evaluating water requirements[J]. Water Resour Res,13(3):651-656.
[9]Jiang L,Islam S. 1999. A methodology for estimation of surface evapotranspiration over large areas using remote sensing observations[J]. Geophys Res Lett,26:2773-2776.
[10]Krishnan P,Black T A,Grant N J,et al. 2006. Impact of changing soil moisture distribution on net ecosystem productivity of a boreal aspen forest during and following drought[J]. Agricultural and Forest Meteorology,139(3):208-223.
[11]Monteith J L. 1973. Principles of environmental physics[M]. New York:
[12]American Elsevier Publishing Company.
[13]Priestley C H B,Taylor R J. 1972. On the assessment of surface heat flux and evaporation using large-scale parameters[J]. Mon Wea Rev,100(2):81-92.
[14]Su Z B,Jacobs J. 2001. Advance earth observation land surface climate[R]. Netherlands:Publications of National Remote Sensing Board,91-108.
[15]Su Z B. 2002. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes[J]. Hydrology and Earth System Sciences Discussions,6(1):85-100.
[16]Tang B H,Li Z L,Zhang R H. 2006. A direct method for estimating net surface shortwave radiation from MODIS data[J]. Remote Sens Environ,103(1):115-126.
[17]Wang G,Huang J,Guo W,et al. 2010. Observation analysis of landatmosphere interactions over the Loess Plateau of northwest China[J]. J Geophys Res:Atmospheres,115(D7):D00K17. DOI:10.1029/2009JD013372.
[18]Wang K C,Liang S L. 2009. Estimation of daytime net radiation from shortwave radiation measurements and meteorological observations[J]. J Appl Meteor Climatol,48(3):634-643.
[19]Wang K C,Li Z Q,Cribb M. 2006. Estimation of evaporative fraction from a combination of day and night land surface temperature and NDVI:A new method to determine the Priestley-Taylor parameter[J]. Remote Sens Environ,102(3):293-305.
[20]Wang K,Liang S. 2008. An improved method for estimating global evapotranspiration based on satellite determination of surface net radiation,vegetation index,temperature,and soil moisture[C]//Geoscience and Remote Sensing Symposium,2008. IEEE International. IEEE,3:III-875-III-878.
[21]Wang K,Wang P,Li Z,et al. 2007. A simple method to estimate actual evapotranspiration from a combination of net radiation,vegetation index,and temperature[J]. J Geophys Res:Atmospheres,112(D15):D15107. DOI:10.1029/2006JD008351.
[22]Yao Y J,Liang S L,Qin Q M,et al. 2010. Monitoring drought over the conterminous United States using MODIS and NCEP reanalysis-2 Data[J]. J App Meteor and Climatol,49(8):1665-1680. DOI:10.1175/2010iamc2328.1.
[23]Zuo J,Huang J,Wang J,et al. 2009. Surface turbulent flux measurements over the Loess Plateau for a semi-arid climate change study[J]. Adv Atmos Sci,2009,26(4):679-691.
[24]陈勇航,陈艳,黄建平,等. 2007. 中国西北地区云的分布及其变化趋势[J]. 高原气象,26(4):741-748. Chen Yonghang,Chen Yan,Huang Jianping,et al. 2007. Distribution and variation trend of cloud over northwest China[J]. Plateau Meteor,26(4):741-748.
[25]胡蝶,张镭,王宏斌. 2013. 黄土高原半干旱地区气溶胶光学厚度遥感分析[J]. 高原气象,32(3):654-664. Hu Die,Zhang Lei,Wang Hongbin. 2013. Remote sensing aerosol with MODIS over aerosol optical depth of semi-arid regions in the loess plateau[J]. Plateau Meteor,32(3):654-664. DOI:10.7522/j.issn. 1000-0534.2012.00062.
[26]胡志远,闭建荣,黄建平,等. 2014. 一种利用天空辐射计反演大气总水汽的算法研究[J]. 高原气象,33(1):232-240. Hu Zhiyuan,Bi Jianrong,Huang Jianping,et al. 2014. An inversion algorithm of columnar water vapor amount derived from sun-sky radiometer[J]. Plateau Meteor,33(1):232-240. DOI:10.7522/j.issn. 1000-0534.2012.00184.
[27]李德帅,王金燕,王式功,等. 2014. 陇中黄土高原半干旱草地地表反照率的变化特征[J]. 高原气象,33(1):89-96. Li Deshuai,Wang Jinyan,Wang Shigong,et al. 2014. Change features of surface albedo of semi-arid grassland over the Loess Plateau of middle part Gansu[J]. Plateau Meteor,33(1):89-96. DOI:10.7522/j.issn. 1000-0534.2012.00178.
[28]李星敏,杨文峰,卢玲. 2011. 基于遥感技术的两种区域蒸散估算方法的应用比较[J]. 高原气象,30(1):125-132. Li Xingmin,Yang Wenfeng,Lu ling. 2011. Comparison of application results of two evapotranspiration estimation methods by remote sensing[J]. Plateau Meteor,30(1):125-132.
[29]马鹏里,张强,杨兴国,等. 2006. 近地层日最高最低气温变化特征[J]. 气象科技,34(1):83-87. Ma Pengli,Zhang Qaing,Yang Xingguo,et al. 2006. Characteristics of maximum and minimum temperature variation in near surface layer[J]. Meteor Sci Technol,34(1):83-87.
[30]马耀明,李茂善,马伟强,等. 2003. 西北地区干旱区及高原上卫星遥感非均匀地区地表区域能量通量研究[J]. 干旱气象,21(3):34-42. Ma Yaoming,Li Maoshan,Ma Weiqiang,et al. 2003. The Study of regional Land surface heat fluxes over heterogeneous landscape in northwest arid areas and Tibetan Plateau by using satellite remote sensing[J]. J Arid Meteor,21(3):34-42.
[31]孟宪红,吕世华. 2012. 卫星遥感结合数值模式估算金塔绿洲非均匀地表能量通量[J]. 高原气象,31(4):910-919. Meng Xianhong,Lü Shihua. 2012. Estimation of land surface heat flux in the heterogeneous underlying surface in Jinta oasis based on remote sensing and numerical model[J]. Plateau Meteor,31(4):910-919.
[32]王介民,刘绍民,孙敏章,等. 2005. ET的遥感监测与流域尺度水资源管理[J]. 干旱气象,23(2):1-7. Wang Jiemin,Liu Shaomin,Sun Min,et al. 2005. Monitoring ET with remote sensing and management of water resources on a basin the scale[J]. J Arid Meteor,23(2):1-7.
[33]杨启东,王丽娟. 2014. SHAW模式的改进及其在黄土高原半干旱区的模拟研究[J]. 干旱气象,32(4):527-536. Yang Qidong,Wang Lijuan. 2014. Improvement of the land surface model SHAW and simulation analysis in the Loess Plateau[J]. J Arid Meteor,32(4):527-536.
[34]杨启东,左洪超,董龙翔,等. 2012. 陆面过程模式TBLSHAW的设计及其在黄土高原地区的模拟研究[J]. 高原气象,31(5):1243-1256. Yang Qidong,Zuo Hongchao,Dong Longxiang,et al. 2012. Design of land surface model TBLSHAW and its simulation analysis on Loess Plateau[J]. Plateau Meteor,31(5):1243-1256.
[35]张堂堂,文军,李振朝,等. 2013. 基于微波遥感参数估算区域蒸散发的方法研究[J]. 高原气象,32(6):1651-1657. Zhang Tangtang,Wen Jun,Li Zhenchao,et al. 2013. A method for determing regional evaportranspiration based on microwave sensing technique[J]. Plateau Meteor,32(6):1651-1657. DOI:10.7522/j.issn.1000-0534.2013.00152.
[36]赵福年,赵铭,王莺,等. 2014. 石羊河流域1960-2009年参考蒸散量与蒸发皿蒸发量变化特征[J]. 干旱气象,32(4):560-568. Zhao Funian,Zhao Ming,Wang Ying,et al. 2014. Variation characteristics of reference evapotranspiration and pan evaporation during 1960-2009 in Shiyang river basin[J]. J Arid Meteor,32(4):560-568.
[37]赵建华,金文岩,刘宏谊,等. 2013. 湍流低频贡献对半干旱地表能量平衡的影响[J]. 干旱气象,31(1):1-9. Zhao Jianhua,Jin Wenyan,Liu Hongyi,et al. 2013. The contribution of turbulent low frequency to surface energy balance in semi-arid area[J]. J Arid Meteor,31(1):1-9.
文章导航

/