论文

一次陇东大暴雨的锋生过程及倾斜涡度发展

  • 王伏村 ,
  • 许东蓓 ,
  • 姚延锋 ,
  • 修韶宇 ,
  • 郭萍萍 ,
  • 阙龙凯 ,
  • 韩树浦
展开
  • 张掖市气象局, 张掖 734000;2. 兰州中心气象台, 兰州 730020;3. 天水市气象局, 天水 741000

收稿日期: 2014-07-07

  网络出版日期: 2016-04-28

基金资助

公益性行业(气象)科研专项(GYHY201306006);中国气象局关键技术集成与应用项目(CMAGJ2014M54);甘肃省气象局气象科研项目(GSMAMs2016-07)

Frontogenesis Process and Slantwise Vorticity Development of a Rainstorm Process in the Eastern Gansu

  • WANG Fucun ,
  • XU Dongbei ,
  • YAO Yanfeng ,
  • XIU Shaoyu ,
  • GUO Pingping ,
  • QUE Longkai ,
  • HAN Shupu
Expand
  • Zhangye Meteorological Bureau, Zhangye 734000, China;2. Lanzhou Centre Meteorological Observation, Lanzhou 730020, China;3. Tianshui Meteorological Bureau, Tianshui 741000, China

Received date: 2014-07-07

  Online published: 2016-04-28

摘要

利用探空、地面加密自动气象站、卫星云图、天气雷达和ECMWF (ERA-interim) 0.25°×0.25°再分析资料,从大气环流、云图和雷达回波特征、锋生及倾斜涡度发展等方面对2013年6月20日发生在甘肃陇东地区的大暴雨天气进行了诊断分析。结果表明:高原东北侧低空切变线、副热带高压及冷空气相互作用下,干冷空气和暖湿空气在中低空交汇产生强锋生,使切变线上垂直涡度、辐合快速发展,触发不稳定能量释放产生强对流,导致大暴雨发生。暴雨出现在TBB<-52℃的强对流云带中,雨强随着冷空气的向南侵入和渗透,由北向南在陇东地区逐步增强,进入四川后开始减弱。雷达强回波区高度<5 km,在0℃层以下具有低质心、暖云高效降水回波的特征。降水回波为南北带状,自南向北移动,不断影响同一地区,具有明显的"列车效应"。锋生强度与切变线强度及暴雨强度的增强、维持和减弱变化基本一致。分析锋生函数表明,在暴雨增强阶段,散度项锋生和形变项锋生起主要作用,形变项锋生作用更显著,倾斜项锋生作用相对较小;在暴雨持续阶段,散度项锋生和形变项锋生作用旗鼓相当,倾斜项起锋消作用。通过全型垂直涡度方程建立垂直涡度变化与锋生的直接联系,从而诊断锋生对天气系统强度的作用。锋生使得湿等熵面倾斜,在锋区前侧产生显著的正垂直涡度变化,切变线得到快速发展。

本文引用格式

王伏村 , 许东蓓 , 姚延锋 , 修韶宇 , 郭萍萍 , 阙龙凯 , 韩树浦 . 一次陇东大暴雨的锋生过程及倾斜涡度发展[J]. 高原气象, 2016 , 35(2) : 419 -431 . DOI: 10.7522/j.issn.1000-0534.2014.00127

Abstract

By using the data of sounding and surface intensive AWS, the satellite cloud images, the Doppler weather radar and the reanalysis data of ECMWF (ERA-interim) 0.25°×0.25°, the frontogenesis process and slantwise vorticity development of a rainstorm occurred on 20 June 2013 in the eastern Gansu are analyzed. The results show that the strong frontogenesis is caused by interaction among the shear line in lower troposphere, subtropical high, and the cold air in the middle and lower troposphere in the northeastern side of the plateau. The frontogenetical forcing causes rapid development of vertical vorticity and convergence in the shear line, triggering the release of unstable energy to generate strong convection and rainstorm. The rainstorm occurs beneath strong convective cloud of TBB<-52℃. Rain intensity changes from weak to strong with the cold air southward invading and infiltrating in the eastern Gansu, however, that begins to weaken after entering the Sichuan. The height of radar strong echo is below 5 km and 0℃ layer, it has characteristics of low center of mass and high efficiency precipitation echo. The strong echo moving from south to north has the train effect. The intensity changes of frontogenesis, shear line and rainfall are consistent. The frontogenesis function analysis indicated that enhancement stage in the rainstorm, effects of divergence and deformation play the main role and effect of deformation is more obvious, however, effect of tilting term is relatively small. The continuous stage in the rainstorm, effects of divergence and deformation are equal in match or contest of strength, effect of tilting term is frontolysis. Through the complete form of vertical vorticity tendency equation established the direct connection between the vertical vorticity change and frontogenesis, to diagnose the frontogenesis effect on the intensity of the weather system. The frontogenesis tilts the wet isentropic surface and produces significant positive vertical vorticity change in front of the frontal zone, which results in the fast development of shear line.

参考文献

[1]Chen G T J,Wang C C,Wang A H. 2007. A case study of subtropical frontogenesis during a blocking event[J]. Mon Wea Rev,135(7):2588-2609.
[2]Miller J E. 1948. On the concept of frontogenesis[J]. J Meteor,5(4):169-171.
[3]丁一汇. 2005. 高等天气学[M]. 北京:气象出版社,111-112. Ding Yihui. 2005. Advanced Synoptic Meteorology[M]. Beijing:China Meteorological Press,111-112.
[4]郭英莲,王继竹,李才媛,等. 2014. 锋生作用对2011年梅汛期湖北暴雨的影响[J]. 气象,40(1):86-93. Guo Yinglian,Wang Jizhu,Li Caiyuan,et al. 2014. Effect of frontogenesis on rainstorm in Hubei during Meiyu period 2011[J]. Meteor Mon,40(1):86-93.
[5]何斌,何锋,范晓红,等. 2013. 一次长江中下游梅雨锋暴雨过程的诊断分析[J]. 高原气象,32(4):1074-1083. He Bin,He Feng,Fan Xiaohong,et al. 2013. Diagnostic analysis on a Meiyu front rainstorm process in middle and lower reaches of Yangtze River[J]. Plateau Meteor,32(4):1074-1083. DOI:10.7522/j.issn. 1000-0534.2012.00101.
[6]何光碧,高文良,屠妮妮. 2009. 两次高原低涡东移特征及发展机制动力诊断[J]. 气象学报,67(4):599-612. He Guangbi,Gao Wenliang,Tu Nini. 2009. The dynamic diagnosis on easterwards moving characteristics and developing mechanism of two Tibetan Plateau vortex processes[J]. Acta Meteor Sinica,67(4):599-612.
[7]何光碧,屠妮妮,张利红,等. 2013. 青藏高原东侧一次低涡暴雨过程地形影响的数值试验[J]. 高原气象,32(6):1546-1556. He Guangbi,Tu Nini,Zhang Lihong,et al. 2013. Numerical experiment of terrain effect of vortex rainstorm process on east side of Qinghai-Xizang Plateau[J]. Plateau Meteor,32(6):1546-1556. DOI:10.7522/j.issn. 1000-0534.2012.00150.
[8]李国平,徐琪. 2005. 边界层动力"抽吸泵"对青藏高原低涡的作用[J]. 大气科学,29(6):965-972. Li Guoping,Xu Qi. 2005. Effect of dynamic pumping in the boundary layer on the Tibetan Plateau vortices[J]. Chinese J Atmos Sci,29(6):965-972.
[9]李明,高维英,侯建忠,等. 2013. 一次西南涡东北移对川陕大暴雨影响的分析[J]. 高原气象,32(1):133-144. Li Ming,Gao Weiying,Hou Jianzhong,et al. 2013. Analysis on a heavy rainstorm from southwest vortex moving toward northeast direction in Sichuan and Shaanxi Provinces[J]. Plateau Meteor,32(1):133-144. DOI:10.7522/j.issn. 1000-0534.2013.00014.
[10]李娜,冉令坤,周玉淑,等. 2013. 北京"7.21"暴雨过程中变形场引起的锋生与倾斜涡度发展诊断分析[J]. 气象学报,71(4):593-605. Li Na,Ran Lingkun,Zhou Yushu,et al. 2013. Diagnosis of the frontogenesis and slantwise vorticity development caused by the deformation in the Beijing "7.21" torrential rainfall event[J]. Acta Meteor Sinica,71(4):593-605.
[11]李晓霞,尚大成,谌芸,等. 2013. 甘肃陇南两次不同强度暴雨天气的中尺度特征分析[J]. 高原气象,32(5):1389-1399. Li Xiaoxia,Shang Dacheng,Shen Yun,et al. 2013. Mesoscale analysis on two different intensity rainstorm processes in the east of Gansu Province[J]. Plateau Meteor,32(5):1389-1399. DOI:10.7522/j.issn. 1000-0534.2012.00130.
[12]李云川,张迎新,马翠平,等. 2012. 热带低压远距离对西南涡稳定加强的作用[J]. 高原气象,31(6):1551-1561. Li Yunchuan,Zhang Yingxin,Ma Cuiping,et al. 2012. Influence of long distract of tropical depression on reinforcement of southwest vortex[J]. Plateau Meteor,31(6):1551-1561.
[13]刘新伟,段海霞,杨晓军,等. 2013.2010年7月甘肃大暴雨及其低涡结构分析[J]. 高原气象,32(4):1032-1041. Liu Xinwei,Duan Haixia,Yang Xiaojun,et al. 2013. Analyses on a heavy rainstorm and structure of low vortex in Gansu Province on July 2010[J]. Plateau Meteor,32(4):1032-1041. DOI:10.7522/j.issn. 1000-0534.2012.00098.
[14]王伏村,许东蓓,王宝鉴,等. 2013. 敦煌致洪暴雨的广义湿位涡分析[J]. 高原气象,32(1):145-155. Wang Fucun,Xu Dongbei,Wang Baojian,et al. 2013. Diagnostic analysis on generalized moist potential vorticity of a torrential rainstorm caused flood in Dunhuang,Gansu[J]. Plateau Meteor,32(1):145-155. DOI:10.7522/j.issn. 1000-0534.2013.00015.
[15]王宗敏,丁一汇,张迎新,等. 2014. 副高外围对流雨带中的对流-对称不稳定及锋生的诊断分析[J]. 大气科学,38(1):133-145. Wang Zongmin,Ding Yihui,Zhang Yingxin,et al. 2014. Analysis of convective-symmetric instabilities and frontogenesis in a convective rain band on the northwest edge of WPSH[J]. Chinese J Atmos Sci,38(1):133-145.
[16]吴国雄,蔡雅萍,唐晓菁. 1995. 湿位涡和倾斜涡度发展[J]. 气象学报,53(4):387-404. Wu Guoxiong,Cai Yaping,Tang Xiaojing. 1995. Moist potential vorticity and slantwise vorticity development[J]. Acta Meteor Sinica,53(4):387-404.
[17]吴国雄,刘还珠. 1999. 全型垂直涡度倾向方程和倾斜涡度发展[J]. 气象学报,57(1):1-15. Wu Guoxiong,Liu Huanzhu. 1999. Complete form of vertical vorticity tendency equation and slantwise vorticity development[J]. Acta Meteor Sinica,57(1):1-15.
[18]吴国雄,郑永骏,刘屹岷. 2013. 涡旋发展和移动的动力和热力问题Ⅱ:广义倾斜涡度发展[J]. 气象学报,71(2):198-208. Wu Guoxiong,Zheng Yongjun,Liu Yimin. 2013. Dynamical and thermal problems in vortex development and movement. Part Ⅱ:Generalized slantwise vorticity development[J]. Acta Meteor Sinica,71(2):198-208.
[19]许东蓓,许爱华,肖玮,等. 2015. 中国西北四省区强对流天气形势配置及特殊性综合分析[J]. 高原气象,34(4):973-981. Xu Dongbei,Xu Aihua,Xiao Wei,et al. 2015. Comprehensive Analysis on the severe convective weather situation configuration and its particularity in Northwest China[J]. Plateau Meteor,34(4):973-981. DOI:10.7522/j.issn. 1000-0534.2014.00102.
[20]姚秀萍,孙建元,康岚,等. 2014. 高原切变线研究的若干进展[J]. 高原气象,33(1):294-300. Yao Xiuping,Sun Jianyuan,Kang Lan,et al. 2014. Advances on research of shear convergence line over Qinghai-Xizang Plateau[J]. Plateau Meteor,33(1):294-300. DOI:10.7522/j.issn. 1000-0534.2013.00164.
[21]郁淑华,高文良,彭骏. 2012. 青藏高原低涡活动对降水影响的统计分析[J]. 高原气象,31(3):592-604. Yu Shuhua,Gao Wenliang,Peng Jun. 2012. Statistical analysis on influence of Qinghai-Xizang Plateau vortex activity on precipitation in China[J]. Plateau Meteor,31(3):592-604.
[22]郁淑华,高文良,彭骏. 2013. 近13年青藏高原切变线活动及其对中国降水影响的若干统计[J]. 高原气象,32(6):1527-1537. Yu Shuhua,Gao Wenliang,Peng Jun. 2013. Statistical analysis of shearline activity in QXP and its influence on rainfall in China in recent 13 years[J]. Plateau Meteor,32(6):1527-1537. DOI:10.7522/j.issn. 1000-0534.2014.00134.
[23]郁淑华,高文良,彭骏,等. 2015. 高原低涡移出高原后持续的对流层中层环流特征[J]. 高原气象,34(6):1540-1555. Yu Shuhua,Gao Wenliang,Peng Jun. 2015. Circulation features of sustained departure plateau vortex at middle tropospheric level[J]. Plateau Meteor,34(6):1540-1555. DOI:10.7522/j.issn. 1000-0534.2014.00134.
[24]张永康,胡玉旋. 1991. 武都涡天气[J]. 气象,17(12):33-36. Zhang Yongkang,Hu Yuxuan. 1991. Weather of Wudu vortex[J]. Meteor Mon,17(12):33-36.
[25]赵玉春,王叶红. 2010. 高原涡诱生西南涡特大暴雨成因的个例研究[J]. 高原气象,29(4):819-831. Zhao Yuchun,Wang Yehong. 2010. A case study on plateau vortex inducing southwest vortex and producing extremely heavy rain[J]. Plateau Meteor,29(4):819-831.
[26]赵玉春. 2011. 梅雨锋对引发暴雨的中尺度对流系统发生发展影响的研究[J]. 大气科学,35(1):81-94. Zhao Yuchun. 2011. Impacts of Meiyu front upon the initiation and development of mesoscale convection systems producing rainstorms[J]. Chinese J Atmos Sci,35(1):81-94.
[27]郑婧,孙素琴,吴静,等. 2014. 梅雨锋短时大暴雨的多尺度环境场分析[J]. 气象,40(5):570-579. Zheng Jing,Sun Suqin,Wu Jing,et al. 2014. Analysis on multi-scale ambient field for short time severe torrential rain on Meiyu front[J]. Meteor Mon,40(5):570-579.
[28]郑永骏,吴国雄,刘屹岷. 2013. 涡旋发展和移动的动力和热力问题Ⅰ:PV-Q观点[J]. 气象学报,71(2):185-197. Zheng Yongjun,Wu Guoxiong,Liu Yimin. Dynamical and thermal problems in vortex development and movement. Part I:A PV-Qview[J]. Acta Meteor Sinica,71(2):185-197.
文章导航

/