论文

内蒙古一次暴雨过程中尺度特征及成因分析

  • 常煜 ,
  • 李秀娟 ,
  • 陈超 ,
  • 马素艳 ,
  • 仲夏 ,
  • 赵斐 ,
  • 马学峰
展开
  • 内蒙古呼伦贝尔市气象局, 呼伦贝尔 021008;2. 内蒙古自治区气象台, 呼和浩特 010051

收稿日期: 2014-07-07

  网络出版日期: 2016-04-28

基金资助

中国气象局预报员专项(CMAYBY2014-009);中国气象局预报员专项(CMAYBY2016-014).

Mesoscale Characteristics of a Rainstorm Process in Inner Mongolia and Its Cause Analysis

  • CHANG Yu ,
  • LI Xiujuan ,
  • CHEN Chao ,
  • MA Suyan ,
  • ZHONG Xia ,
  • ZHAO Fei ,
  • MA Xuefeng
Expand
  • Hulun Buir Meterological Bureau, Hulun Buir 021008, China;2. Inner Mongolia Autonomous Regional Meteorological Observatory, Hohhot 010051, China

Received date: 2014-07-07

  Online published: 2016-04-28

摘要

利用常规观测资料、NCEP 1°×1°再分析资料、自动气象站资料、FY-2E逐时云顶亮温TBB资料和闪电定位资料,对2013年7月14-16日内蒙古暴雨过程进行分析。结果表明,此次暴雨过程58%的暴雨站点在2 h、3 h或6 h即达到暴雨量级,强降水造成的中尺度雨团和中尺度雨带是暴雨主要表现特征。强降水是冷锋云系或涡旋云系中不断生消的中尺度对流系统(MCS)直接造成的,在MCS发展和成熟阶段,雨团和地闪密度大值区位于TBB≤-52℃冷云区冷空气流入一侧,但MCS移出区域,也有雨团的出现,是由层状云引发的。地闪密度增加,MCS发展,雨强增强,地闪频次锐减,MCS开始消亡,雨强减弱。阻塞形势稳定、南亚高压东伸和西太平洋副热带高压位置偏北是MCS发生的有利行星尺度背景条件,低空急流日变化是造成强降水集中出现在前半夜至凌晨的主要原因。对流层低层高温高湿、位势不稳定层结和风垂直切变对MCS形成提供了有利环境场。地面中尺度"人"字形切变线形成的扰动机制先于MCS发生,MCS出现在暖式切变线南侧不稳定区,但对流层高层强辐散中心和低层强正涡度中心滞后于强降水峰值出现时刻3~4 h。

本文引用格式

常煜 , 李秀娟 , 陈超 , 马素艳 , 仲夏 , 赵斐 , 马学峰 . 内蒙古一次暴雨过程中尺度特征及成因分析[J]. 高原气象, 2016 , 35(2) : 432 -443 . DOI: 10.7522/j.issn.1000-0534.2014.00155

Abstract

Using conventional observational data, NCEP 1°×1° reanalysis data, automatic weather station data, FY-2E hourly Temperature of Black Body(TBB) data and Cloud-to-Ground(CG) lightning data, a rainstorm process was analyzed in Inner Mongolia from 14 to 16 July 2013. The results showed:The rainstorm stations about 58% could reach rainstorm magnitude in 2 hours, 3 hours or 6 hours, mesoscale rain cluster and mesoscale rain belt were important feature of rainstorm process. Heavy rainfall was caused by mesoscale convective system(MCS) that generated and vanished in cold front clouds and vortex clouds. When MCS was developing and matured, rain cluster and maximum value of CG density were located the coldest of TBB≤-52℃ where the cold air flowed into. But the region where MCS shifted out existed rain cluster caused by stratiform clouds. When CG density increased, MCS developed and precipitation intensified. When CG density decreased, MCS dissipated and precipitation weakened. The blocking maintenance, the eastward extension of South Asia High and the northward position of the West Pacific Subtropical High provided planetary-scale circulation feature for MCS. The main reason that heavy rainfall concentrated form midnight to dawn was caused by diurnal variation of low-level jet. It was useful for persistent and development of MCS that there were high temperature and high moisture, geopotential instability layer and vertical wind shear in low-level of troposphere. Disturbance mechanism completed by the surface mesoscale ‘people’-shaded shear line advanced development of MCS. MCS occurred in the area of instability on the south side of warm shear line, but an upper-level divergent center and a low-level positive vorticity advection center lagged peak value of heavy rainfall approximately 3~4 hours.

参考文献

[1]Anderson C J,Arritt R W. 1998. Mesoscale convective complexes and persistent elongated convective systems over the United States during 1992 and 1993[J]. Mon Wea Rev,126(3):578-599.
[2]Holle R L,Watson A I,Lopez R E,et al. 1994. The life cycle of lightning and severe weather in a 3-4 June 1985 pre-storm mesoscale convective system[J]. Mon Wea Rev,122(8):1798-1808.
[3]Maddox R A. 1980. Mesoscale convective complexes[J]. Bull Amer Meteor Soc,61:1374-1387.
[4]Rutledge S A,Macgorman D R. 1988. Cloud-to-Ground lightning activity in the 10-11 June 1985 mesoscale convective system observed during the Oklahoma-Kansas pre-storm project[J]. Mon Wea Rev,116(7):1393-1408.
[5]常煜,韩经纬. 2015. 一次阻塞形势下的内蒙古暴雨过程特征分析[J]. 高原气象,34(3):741-752. Chang Yu,Han Jingwei. 2015. Characteristics of rainstorm processes under the blocking pattern in Inner Mongolia[J]. Plateau Meteor,34(3):741-752. DOI:10.7522/j.issn. 1000-0534.2014.00033.
[6]丁一汇. 2008. 高等天气学[M]. 北京:气象出版社,423-452. Ding Yihui. 2008. Advanced synoptic meteorology[M]. Beijing:China Meteorological Press,423-452.
[7]井喜,李社宏,屠妮妮,等. 2011. 黄河中下游一次MCC和中[-β]尺度强对流云团相互作用暴雨过程综合分析[J]. 高原气象,30(4):913-928. Jing Xi,Li Shehong,Tu Nini,et al. 2011. Synthetic diagnostic analysis on a rainstorm process caused interaction of MCC and meso-b scale severe convective cell in Mid-and Lower-Reaches of Yellow River[J]. Plateau Meteor,30(4):913-928.
[8]李晓霞,尚大成,谌芸,等. 2013. 甘肃陇南两次不同强度暴雨天气的中尺度特征分析[J]. 高原气象,32(5):1389-1399. Li Xiaoxia,Shang Dacheng,Chen Yun,et al. 2013. Mesoscale analysis on two different intensity rainstorm processes in the East of Gansu Province[J]. Plateau Meteor,32(5):1389-1399. DOI:10.7522/j.issn. 1000-0534.2012.00130.
[9]梁军,张胜军,石小龙,等. 2012.2010年8月8-10日辽东半岛暴雨过程的中尺度特征分析[J]. 高原气象,31(5):1320-1331. Liang Jun,Zhang Shengjun,Shi Xiaolong,et al. 2012. Analyses on mesoscale characteristics associated with rainstorm in Liaodong Peninsula from 8 to 10 August 2010[J]. Plateau Meteor,31(5):1320-1331.
[10]刘景涛,王娴,罗孝逞,等. 1987. 内蒙古自治区天气预报手册(下册)[M]. 北京:气象出版社,4. Liu Jingtao,Wang Xian,Luo Xiaocheng,et al. 1987. The weather forecast handbook in Inner Mongolia(next volume)[M]. Beijing:China Meteorological Press,4.
[11]罗慧,刘勇,冯桂力,等. 2009. 陕西中部一次超强雷暴天气的中尺度特征及成因分析[J]. 高原气象,28(4):816-826. Luo Hui,Liu Yong,Feng Guili,et al. 2009. Mesoscale characteristics of a super thunderstorm weather in central Shaanxi Province and its cause analysis[J]. Plateau Meteor,28(4):816-826.
[12]慕建利,李泽椿,谌芸,等. 2014. 一次陕西关中强暴雨中尺度系统特征分析[J]. 高原气象,33(1):148-161. Mu Jianli,Li Zechun,Chen Yun,et al. 2014. Feature analyses of mesoscale convective system of a heavy rainfall in the central Shanxi Plain[J]. Plateau Meteor,33(1):148-161. DOI:10.7522/j.issn. 1000-0534.2013.00049.
[13]王娴,唐毅,孙绍菊,等. 1987. 内蒙古自治区天气预报手册(上册)[M]. 北京:气象出版社,4. Wang Xian,Tang Yi,Sun Shouju,et al. 1987. The weather forecast handbook in Inner Mongolia(first volume)[M]. Beijing:China Meteorological Press,4.
[14]杨康权,张琳,肖递祥,等. 2013. 四川盆地西部一次大暴雨过程的中尺度特征分析[J]. 高原气象,32(2):357-367. Yang Kangquan,Zhang Lin,Xiao Dixiang,et al. 2013. Mesoscale analyses on a heavy rainstorm process in western Sichuan Basin[J]. Plateau Meteor,32(2):357-367. DOI:10.7522/j.issn. 1000-0534.2012.00035.
[15]张诚忠,万齐林,杨兆礼,等. 2011. 华南暖区强对流降水系统的结构和闪电特征分析[J]. 高原气象,30(4):1034-1045. Zhang Chengzhong,Wan Qilin,Yang Zhaoli,et al. 2011. Characteristic analysis of structure and lightning for convective system produced heavy precipitation in Warm Sector of South China[J]. Plateau Meteor,30(4):1034-1045.
[16]赵丽娟,牛生杰,张羽,等. 2009. 雷州半岛盛夏闪电活动特征及其与降水的联系[J]. 高原气象,28(3):663-668. Zhao Lijuan,Niu Shengjie,Zhang Yu,et al. 2009. Relationship between the characteristics of lighting activity and precipitation during midsummer in the Leizhou Peninsula[J]. Plateau Meteor,28(3):663-668.
[17]赵思雄,陶祖钰,孙建华,等. 2004. 长江流域梅雨锋暴雨机理的分析研究[M]. 北京:气象出版社,1-281. Zhao Sixiong,Tao Zuyu,Sun Jianhua,et al. 2004. Analysis on the mechanism of Meiyu Front Rainstorm in Yangtze River Basin[M]. Beijing:China Meteorological Press,1-281.
[18]赵思雄,张立生,孙建华. 2007.2007年淮河流域致洪暴雨及其中尺度系统特征的分析[J]. 气候与环境研究,12(6):713-727. Zhao Sixiong,Zhang Lisheng,Sun Jianhua. 2007. Study of heavy rainfall and related mesoscale systems causing severe flood in Huaihe River Basin during the summer of 2007[J]. Climatic and Environmental Research,12(6):713-727.
[19]钟水新,王东海,张人禾,等. 2013. 一次冷涡发展阶段大暴雨过程的中尺度对流系统研究[J]. 高原气象,32(2):435-445. Zhong Shuixin,Wang Donghai,Zhang Renhe,et al. 2013. Study of mesoscale convective system in heavy rainfall process at a cold vortex development stage[J]. Plateau Meteor,32(2):435-445. DOI:10.7522/j.issn. 1000-0534.2012.00042.
[20]朱乾根,林锦瑞,寿绍文,等. 1992. 天气学原理和方法[M]. 北京:气象出版社,385,364-399. Zhu Qiangen,Lin Jinrui,Shou Shaowen,et al. 1992. Principles and Methods of Synoptic Meteorology[M]. Beijing:China Meteorological Press,385,364-399.
文章导航

/