论文

非冻结水体对气温影响的观测试验与模拟评估

  • 尤媛 ,
  • 郭建侠 ,
  • 陈一枝 ,
  • 沈雪峰 ,
  • 金莲姬 ,
  • 钟朱慧
展开
  • 南京信息工程大学中国气象局气溶胶-云-降水重点开放实验室, 南京 210044;2. 中国气象局气象探测中心, 北京 100081;3. 浙江省气象局, 杭州 310000;4. 浙江省嘉兴市海盐县气象局, 嘉兴 314300

收稿日期: 2014-09-01

  网络出版日期: 2016-04-28

基金资助

公益性行业(气象)科研专项(GYHY201106049)

Observation Experiment and Simulation Evaluation of Influence of Non-Frozen Water Body on Air Temperature

  • YOU Yuan ,
  • GUO Jianxia ,
  • CHEN Yi-zhi ,
  • SHEN Xuefeng ,
  • JIN Lianji ,
  • ZHONG Zhuhui
Expand
  • Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing 210044, China;2. Meteorological Observation Center of China Meteorological Adminstration, Beijing 100081, China;3. Zhejiang Province Meteorological Bureau, Hangzhou 310000, China;4. Haiyan Meteorological Bureau, Jiaxing 314300, China

Received date: 2014-09-01

  Online published: 2016-04-28

摘要

为定量评估水体对温度的影响,通过观测试验和数值模拟研究不同尺度水体的影响范围,并进行敏感性试验分析,得到以下主要结果:(1)观测试验表明,冬、春季水体对周围的影响主要表现为夜间增温和白天降温,离水体越近,效果越明显,影响范围小尺度水体冬季可达200 m,春季影响距离减小,大尺度水体可达1 km,水体的增温作用存在背景风速阈值,小尺度水体的阈值为3 m·s-1,大尺度水体的阈值为4 m·s-1,当背景风速小于阈值时,增温作用显著,大于阈值时,增温作用不显著,白天降温作用受风速的影响不大。(2)数值模拟结果表明,不同尺度水体对温度均有白天降温、夜间升温的作用,以0.05℃为标准,小尺度水体对温度的影响范围达到100 m,以0.2℃为标准,大尺度水体的影响范围达到3.7 km左右。(3)对背景风速、初始温度、天气状况的敏感性分析表明,夜间,当风速小于对应阈值时,风速越大,水体对下风向的影响越大,大于对应阈值时,水体的影响不随风速变化而变化;白天,水体对下风向的影响受初始风速的影响不如夜间明显,夜间,温度越高,水体的影响距离越小,白天反之,水体对温度的影响随天气变化显著不同。

本文引用格式

尤媛 , 郭建侠 , 陈一枝 , 沈雪峰 , 金莲姬 , 钟朱慧 . 非冻结水体对气温影响的观测试验与模拟评估[J]. 高原气象, 2016 , 35(2) : 495 -506 . DOI: 10.7522/j.issn.1000-0534.2015.00005

Abstract

In order to evaluate how the water body affects the air temperature observing quantitatively, two observing experiments and some numerical simulations were conducted. The results are:(1) The observing experiments indicate that:the air temperature around the water body is increased at night and decreased at daytime. The nearer to the water body, the stronger of the inference is. For the small-scale water body, the scope of the effects is obvious at 200 m at the lee shore in winter, and it seems decrease in spring. While for the large-scale water body, the scope of the effects is obvious about 1km. There are upper bounds of wind speed for the effects at night, 3 m·s-1 to the small water body, 4 m·s-1 to the large one. When wind flow under the bound value, the warming effects are obvious, however, the effects are no show if the wind beyond the bound value. No upper bound appeared during the daytime. (2)Simulations show the same pattern of the effects that the surrounding air of water body is warming at night and cooling at daytime. But the effecting scopes are smaller than the observations. 0.5℃ warm curve is 100 m to the small water body, and 0.2℃ warm curve is 3.7 km to the large water body. (3) The effects of the water body on the surrounding air temperature are sensitive to the background wind speed, initial temperature and weather condition. The intensity and the distance of the effects are larger with the increase of the wind speed limited to the upper bound at night, the temperature at daytime and the decrease of the temperature at night. Different weather conditions, there are different effect of water body on temperature.

参考文献

[1]Kodama Y,Eaton F,Wendler G. 1983. The influence of Lake Minchumina,Interior Alaska,on its surroundings[J]. Archives for Meteorology,Geophysics,and Bioclimatology (Series B),33(3):199-218.
[2]Long Z,Perrie W,Tang C L,et al. 2012. Simulated interannual variations of freshwater content and sea surface height in the Beaufort Sea[J]. J Climate,25(4):1079-1095.
[3]Notaro M,Holman K,Zarrin A,et al. 2013. Influence of the Laurentian Great Lakes on Regional Climate[J]. J Climate,26(3):789-804.
[4]Samuelsson P,Kourzeneva E,Mironov D. 2010. The impact of lakes on the European climate as simulated by a regional climate model[J]. Boreal Environment Research,15(2):113-129.
[5]Strong A E. 1972. The influence of a Great Lake anticyclone on the atmospheric circulation[J]. J Appl Meteor,11(4):598-611.
[6]WMO (World Meteorological Organization). 2010. Commission for instruments and methods of observation[R]. Helsinki:15<sup>th</sup> session. WMO-No. 1064.
[7]曾宇星,封国林,赵俊虎,等. 2014. 春季马斯克林高压对中国东北地区夏季气温的影响[J]. 高原气象,33(5):1374-1382. Zeng Yuxing,Feng Guolin,Zhao Junhu,et al. 2014. Impacts of spring Mascarene high on air temperature over Northeast China in summer[J]. Plateau Meteor,33(5):1374-1382. DOI:10.7522/j.issn. 1000-0534.2013.00078.
[8]高阳,高甲荣,冯泽深,等. 2009. 北京北部山区小水体生态评价指标筛选[J]. 北京林业大学学报,31(1):100-105. Gao Yang,Gao Jiarong,Feng Zeshen,et al. 2009. Selection of indicators for ecological assessment on small water bodies of northern mountainous area of Beijing[J]. J Beijing Forestry University,31(1):100-105.
[9]高媛媛,何金海,王自发. 2007. 城市化进程对北京区域气象场的影响模拟[J]. 气象与环境学报,23(3):58-64. Gao Yuanyuan,He Jinhai,Wang Zifa. 2007. Simulation for impact of urbanization on meteorological conditions in Beijing area[J]. J Meteor Environ,23(3):58-64.
[10]李江林,陈玉春,吕世华,等. 2009. 利用RAMS模式对山谷城市兰州冬季湖泊效应的数值模拟[J]. 高原气象,28(5):955-965. Li Jianglin,Chen Yuchun,Lü Shihua,et al. 2009. Numerical simulation of winter lake effect in valley city of Lanzhou using RAMS Model[J]. Plateau Meteor,28(5):955-965.
[11]李绍云,田萍,梁杰,等. 2008. 城市发展对气象探测环境的影响分析[J]. 环境保护与环境经济,28(11):40-42. Li Shaoyun,Tian Ping,Liang Jie,et al. 2008. The influence of urbanization development on meteorological observation environment is analyzed[J]. Environmental Protection Circular Economy,28(11):40-42.
[12]刘红年,张宁,吴涧,等. 2010. 水库对局地气候影响的数值模拟研究[J]. 云南大学学报,32(2):171-176. Liu Hongnian,Zhang Ning,Wu Jian,et al. 2010. The numeric simulated study on the local climate effect of reservoir in mountain area[J]. J Yunnan University,32(2):171-176.
[13]吕雅琼,马耀明,李茂善,等. 2008. 纳木错湖夏季典型大气边界层特征的数值模拟[J]. 高原气象,27(4):733-740. Lü Yaqiong,Ma Yaoming,Li Maoshan,et al. 2008. Numerical simulation of typical atmospheric boundary layer characteristics over Lake Namco Region,Tibetan Plateau in summer[J]. Plateau Meteor,28(5):955-965.
[14]马凤莲,丁力,王宏. 2009. 承德市干湿岛效应及其城市化影响分析[J]. 气象与环境学报,25(3):14-18. Ma Fenglian,Ding Li,Wang Hong. 2009. Dry and moisture island effects and its responses to the urbanization in Chengde, Hebei Province[J]. J Meteor Environ,25(3):14-18.
[15]苗世光,蒋维楣,王晓云,等. 2002. 城市小区气象与污染扩散数值模式建立的研究[J]. 环境科学学报,22(4):478-483. Miao Shiguang,Jiang Weimei,Wang Xiaoyun,et al. 2002. Numerical simulation of meteorology and pollutant diffusion in urban sub-domain[J]. Acta Scientiae Circumstantiae,22(4):478-483.
[16]朴美花,刘寿东,王咏薇,等. 2014. 夏季太湖表面辐射和能量通量特征观测分析[J]. 高原气象,14(19):1-7. Pu Meihua,Liu Shoudong,Wang Yongwei,et al. 2014. Observed analysis of radiation and energy fluxes characteristics across Lake Taihu surface in summer[J]. Plateau Meteor,14(19):1-7.
[17]气象设施和气象探测环境保护条例[S]. 2012. 北京:第623号中华人民共和国国务院令. Meteorological facilities and meteorological observation environment protection regulations[S]. 2012. Beijing:623<sup>rd</sup> order of the State Council of the people's Republic of China.
[18]盛裴轩,毛节泰,李建国,等. 2003. 大气物理学[M]. 北京:北京大学出版社,5. Sheng Peixuan,Mao Jietai,Li Jianguo,et al. 2003. The Atmospheric Physics[M]. Beijing:The Peking University Publishing House,5.
[19]郑然,李栋梁,蒋元春. 2015. 全球变暖背景下青藏高原气温变化的新特征[J]. 高原气象,34(6):1531-1539. Zheng Ran,Li Dongliang,Jiang Yuanchun. 2015. New characteristics of temperature change over Qinghai-Xizang Plateau on the background of global warming[J]. Plateau Meteor,34(6):1531-1539. DOI:10.7522/j.issn. 1000-0534.2014.00123.
[20]中华人民共和国气象法[Z]. 1999. 北京:法律出版社. Meteorological laws of the People's Republic of China source[Z]. 1999. Beijing:Law Press Publishing House of Law.
[21]左洪超,胡隐樵. 1992. 黑河试验区沙漠和戈壁的总体输送系数[J]. 高原气象,11(4):371-380. Zuo Hongchao,Hu Yinjiao. 1992. The bulk transfer coefficient over desert and gobi in Heihe region[J]. Plateau Meteor,11(4):371-380.
文章导航

/