为了深入认识不同条件或不同区域中冰相粒子相对增长状况对雷暴云内非感应起电过程的影响,将基于S91非感应起电参数化方案引入到三维强风暴动力-电耦合数值模式中,模拟分析了一次典型雷暴过程的霰粒和冰晶的生成和消耗过程以及随高度的分布特征;同时分析了雷暴云成熟时期不同时刻霰粒子和冰晶的比含水量等的增长变化状况,将不同时刻霰粒子-冰晶之间非感应起电的电荷转移极性和量级,与霰粒子和冰晶的相对增长状况作对比分析。结果表明,霰粒和冰晶由于所处环境的不同温度和液水含量条件而通过不同的微物理过程增长或消耗;细微的温度或液水含量条件的差异都会影响两类粒子的相对增长快慢;而两类冰相粒子中相对增长更快的粒子荷正电,增长更慢的粒子荷负电,相对增长的快慢决定了两种冰相粒子在非感应起电过程中所带电荷极性和量级。
[1]Baker B,Baker M B,Jayaratne E R,et al. 1987. The influence of diffusional growth rate on the charge transfer accompanying rebounding collisions between ice crystals and hailstones[J]. Quart J Roy Meteor Soc,113:1193-1215.
[2]Baker M B,Dash J G. 1994. Mechanism of charge transfer between colliding ice particles in thuderstorms[J]. J Geophys Res,99:10621-10626.
[3]Brooks I M,Saunders C P R,Mitzeva R P,et al. 1997. The effect on thunderstorm charging of the rate of rime accretion by graupel[J]. Atmos Res,43:277-295.
[4]Brooks I M,Saunders C P R. 1994. An experimental investigation of the inductive mechanism of thunderstorm electrification[J]. J Geophys Res,99:10627-10632.
[5]Caranti G M,Avila E E. 1991. Charge transfer during individual collisions in ice growing from vapor deposition[J]. J Geophys Res,96:15365-15375.
[6]Dash J G,Mason B L,Wettlaufer J S. 2001. Theory of charge and mass transfer in ice-ice collisions[J]. J Geophys Res,106:20395-20402.
[7]Edward R M,Donald R M,Conrad L Z. 2005. Charge structure and lightning sensitivity in a simulated multicell thunderstorm[J]. J Geophys Res,110(D12):D12101. DOI:10.1029/2004JD005287.
[8]Gaskell W,Illingworth A J. 1980. Charge transfer accompanying individual collisions between ice particles and its role in thunderstorm electrification[J]. Quart J Roy Meteor Soc,106:841-854.
[9]Jayaratne E R,Saunders C P R,Hallett J. 1983. Laboratory studies of the charging of soft-hail during ice crystal interactions[J]. Quart J Roy Meteor Soc,109:609-630.
[10]Keith W D,Saunders C P R. 1990. Further laboratory studies of the charging of graupel during ice crystal interactions[J]. Atmos Res,25:445-464.
[11]Marshall B J P,Latham J,Saunders C P R. 1978. A laboratory study of charge transfer accompanying the collision of ice crystals with a simulated hailstones[J]. Quart J Roy Meteor Soc,104:163-178.
[12]Mitzeva R P,Tsenova B,Saunders C P R. 2005. A modelling study of the effect of cloud saturation and particle growth rates on charge transfer in thunderstorm electrification[J]. Atmos Res,76:205-221.
[13]Reynolds S E,Brook M,Mary F G. 1957. Thunderstorm charge separation[J]. J Meteor,14:426-436.
[14]Rodolfo G P,Eldo E A,Nesvit E C,et al. 2000. A laboratory study of graupel charging[J]. J Geophys Res,105:20803-20812.
[15]Saunders C P R,Avila E E,Peck S L,et al. 1999. A laboratory study of the effects of rime ice accretion and heating on charge transfer during ice crystal graupel collisions[J]. Atmos Res,51:99-117.
[16]Saunders C P R,Bax-Norman H,Avila E E,et al. 2004. Further laboratory studies of the charging of graupel during ice crystal interactions[J]. Quart J Roy Meteor Soc,130:1395-1406.
[17]Saunders C P R,Bax-Norman H,Emersic C,et al. 2006. Laboratory studies of the effect of cloud conditions on graupel/crystal charge transfer in thunderstorm electrification[J]. Quart J Roy Meteor Soc,132:2653-2673.
[18]Saunders C P R,Keith W D,Mitzeva R P. 1991. The effect of liquid water on thunderstorm charging[J]. J Geophys Res,96:11007-11017.
[19]Saunders C P R,Peck S L,Aguirre V G G,et al. 2001. A laboratory study of the influence of water vapour and mixing on the charge transfer process during collisions between ice crystals and graupel[J]. Atmos Res,58:187-203.
[20]Takahashi T. 1978. Riming electrification as a charge generation mechanism in thunderstorms[J]. J Atmos Sci,35:1536-1548.
[21]Williams E,Renyi Zhang,Dennis B. 1994. Microphysical growth state of ice particles and large-scale eletrical structure of clouds[J]. J Geophys Res,99:10787-10792.
[22]Wojcik W A. 1994. An examination of thunderstorm charging mechanisms using the IAS 2D storm electrification model[D]. Rapid City:Master's thesis,South Dakota School of Mines and Technology,113.
[23]郭凤霞,孙京. 2012. 雷暴云起电机制及其数值模拟的回顾与进展[J]. 高原气象,31(3):862-874. Guo Fengxia,Sun Jing. 2012. Review and progress of thunderstorm electrification mechanisms and numerical modelings[J]. Plateau Meteor,31(3):862-874.
[24]郭凤霞,张义军,言穆弘. 2007. 青藏高原那曲地区雷暴云电荷结构特征数值模拟研究[J]. 大气科学,31(1):28-36. Guo Fengxia,Zhang Yijun,Yan Muhong. 2007. A Numerical Study of the Charge Structure in Thunderstorm in Nagqu Area of the Qinghai Xizang Plateau[J]. Chinese J Atmos Sci,31(1):28-36.
[25]郭凤霞,张义军,言穆弘. 2010. 雷暴云首次放电前两种非感应起电参数化方案的比较[J]. 大气科学,34(2):361-373. Guo Fengxia,Zhang Yijun,Yan Muhong. 2010. Comparison of two parameterization schemes for noninductive mechanism before the first discharge in a simulated single cell storm[J]. Chinese J Atmos Sci,34(2):361-373.
[26]孔凡铀,黄美元,徐华英. 1990. 对流云中冰相过程的三维数值模拟:(Ⅰ)模式建立及冷云参数化[J]. 大气科学,14(4):441-453. Kong Fanyou,Huang Meiyuan,Xu Huaying. 1990. Three dimensional numerical simulation of ice phase processes in convective cloud I:Model establishment and cold cloud parameterization[J]. Chinese J Atmos Sci,14(4):441-453.
[27]孙安平. 2000. 强风暴动力和电耦合数值模拟研究[D]. 兰州:中国科学院寒区旱区环境与工程研究所. Sun Anping. 2000. Numerical study in a thress-dimensional dynamic-electrification coupled model[D]. Lanzhou:Cold and Arid Regions Environment and Engineering Resaerch Institute,Chinese Academy of Sciences.
[28]王昊亮. 2014. 雷暴云放电特征的三维数值模拟研究[D]. 南京:南京信息工程大学. Wang Haoliang. 2014. three dimensional numerical simulation of discharge characteristics of thunderstorm clouds[D]. Nanjing:Nanjing University of Information Science and Technology.
[29]王天义,朱克云,张杰,等. 2015. 拉萨一次热力雷暴的结构特征及数值模拟[J]. 高原气象,34(5):1237-1248. Wang Tianyi,Zhu Keyun,Zhang Jie,et al. 2015. Structural features and numerical simulation of a thermodynamic thunderstorm in Lhasa[J]. Plateau Meteor,34(5):1237-1248. DOI:10.7522/j.issn. 1000-0534.2014.00054.
[30]肖辉,吴玉霞,胡朝霞,等. 2002. 旬邑地区冰雹云的早期识别及数值模拟[J]. 高原气象,21(2):159-166. Xiao Hui,Wu Yuxia,Hu Zhaoxia,et al. 2002. Earlier identification and numerical simulation of hail storms occurring in Xunyi Region[J]. Plateau Meteor,21(2):159-166.
[31]许维伟,李在光,祝宝友,等. 2015. 基于不间断闪电波形采集的一次皖北雷暴负地闪特征观测[J]. 高原气象,34(3):850-862. Xu Weiwei,Li Zaiguang,Zhu Baoyou,et al. 2015. Some properties of negative cloud-to-ground flashes over North Anhui based on continuous electromagnetic field observations[J]. Plateau Meteor,34(3):850-862. DOI:10.7522/j.issn. 1000-0534.2013.00198.
[32]言穆弘,刘欣生,安学敏,等. 1996. 雷暴非感应起电机制的模拟研究Ⅰ:云内因子影响[J]. 高原气象,15(4):425-437. Yan Muhong,Liu Xinsheng,An Xuemin,et al. 1996. A Simulation study of non-inductive charging mechanism in thunderstormⅠ:Effect of cloud factor[J]. Plateau Meteor,15(4):425-437.
[33]张廷龙,杨静,楚荣忠,等. 2012. 平凉一次雷暴云内的降水粒子分布及其电学特征的探讨[J]. 高原气象,31(4):1091-1099. Zhang Tinglong,Yang Jing,Chu Rongzhong,et al. 2012. Distribution of precipitation particle and electrical characteristic of a thunderstorm in Pingliang region[J]. Plateau Meteor,31(4):1091-1099.
[34]赵鹏国,周筠珺,邓德文,等. 2013. 雷暴微物理过程对电活动影响的数值模拟研究[J]. 高原气象,32(3):884-893. Zhao Pengguo,Zhou Yunjun,Deng Dewen,et al. 2013. Numerical simulation of the effect of microphysical process of thunderstorm on electrical activity[J]. Plateau Meteor,32(3):884-893. DOI:10.7522/j.issn. 1000-0534.2012.00082.