论文

青藏高原极端气温的动力降尺度模拟

  • 肖林鸿 ,
  • 高艳红 ,
  • Chen Fei ,
  • 许建伟 ,
  • 李凯 ,
  • 李霞 ,
  • 蒋盈沙
展开
  • 中国科学院寒区旱区环境与工程研究所寒旱区陆面过程与气候变化重点试验室, 兰州 730000;2. 中国科学院大学, 北京 100049;3. National Center of Atmospheric Research, Boulder, CO 80301, USA

收稿日期: 2015-12-30

  网络出版日期: 2016-06-28

基金资助

国家自然科学基金项目(91537105,91537211,41322033);全球变化国家重大科学研究计划(2013CB956004)

Dynamic Downscaling Simulation of Extreme Temperature Indices over the Qinghai-Xizang Plateau

  • XIAO Linhong ,
  • GAO Yanhong ,
  • CHEN Fei ,
  • XU Jianwei ,
  • LI Kai ,
  • LI Xia ,
  • JIANG Yingsha
Expand
  • Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Cold and Arid Regions Environmental and Engineering Institute, Chinese Academy of Sciences, Lanzhou 730000, China;2. University of Chinese Academy of Sciences, Beijing 100049, China;3. National Center for Atmospheric Research, Boulder CO 80301, USA

Received date: 2015-12-30

  Online published: 2016-06-28

摘要

利用ERA-Interim再分析资料作为边界条件,基于耦合陆面模式Noah-MP的区域气候模式WRF在东亚区域进行了动力降尺度模拟(简称WRF2),对比格点观测资料,评估了动力降尺度对青藏高原极端气温指数的模拟能力,在此控制试验基础上,分别将WRF的陆面模式替换为Noah LSM,边界条件替换为CCSM4,进行了两组敏感性试验(分别是WRF1 和WRF3),通过与控制试验的比较,分析了边界条件和陆面模式对极端气温指数模拟的影响。结果表明,WRF2 能较好地模拟青藏高原极端气温指数气候态的空间分布,但存在一定的冷偏差;受边界条件影响WRF3 模拟的极端气温指数的气候倾向率存在负偏差。同时,尽管采用不同的边界条件,耦合相同陆面过程的两次数值试验对极端气温空间分布的模拟能力相似,相比WRF2,WRF1 表现出更强的冷偏差;但边界条件对极端气温指数气候倾向率的影响大于陆面模式,WRF3 模拟的极端气温指数气候倾向率与观测结果更为接近。

本文引用格式

肖林鸿 , 高艳红 , Chen Fei , 许建伟 , 李凯 , 李霞 , 蒋盈沙 . 青藏高原极端气温的动力降尺度模拟[J]. 高原气象, 2016 , 35(3) : 574 -589 . DOI: 10.7522/j.issn.1000-0534.2016.00039

Abstract

To produce high-resolution climate simulations over Qinghai-Xizang Plateau(QXP)for studying extreme temperature indices,a dynamic downscaling experiment(WRF2 for short)has been performed over East Asia based on WRF coupled with Noah-MP,forced by ERA-Interim(ERA-Int).Compared with grid observation data,the performance of ERA_Noah-MP in simulating extreme temperature indices over the QXP has been evaluated.To investigate the impacts of the land surface model and the boundary conditions on the simulated extreme temperature indices.Different land surface models(Noah LSM)and boundary conditions(CCSM)are used to run two other dynamic downscaling experiments(WRF1,WRF3 for short),which have the same model configurations with WRF2 except for the land surface models and the boundary conditions.The results show that the basic features of the spatial patterns of all extreme temperature indices over the QXP can be finely reproduced by WRF2.The centered pattern correlation coefficients of WRF2 compared to observation for most extreme temperature indices are above 0.77 and the simulation of the length of growing season performs best.But simulations for extreme temperature indices suffer from systematic biases to a certain extent,On the whole,a cold bias exists in the simulations of WRF2,especially in winter.WRF2 can simulate the observed inter-annual variations well,and can reproduce the warm trend of extreme temperature indices.However,due to the impacts of the boundary conditions,climatic tendency rates of extreme temperature indices for WRF2 exist negative deviation.In spite of being forced by the different boundary conditions,the two experiments coupled with the same land surface model reproduce the similar spatial distributions of extreme temperature indices under current model configurations; between two land surface models tested,WRF1 produced significantly larger cold bias.This difference between two experiments is caused by the different reproduction between two Land surface models for snow cover and snow melting process,bare soil albedo over QXP,which lead to a higher surface albedo in Noah LSM compared with Noah-MP.However,the boundary condition has more influence on climatic tendency rates of extreme temperature indices compared with the land surface model,and thus the climatic tendency rates of WRF3 are close to observation.

参考文献

[1]Colette A,Vautard R,Vrac M.2010.Regional climate downscaling with prior statistical correction of the global climate forcing[J].Geophys Res Lett,118(2):199-207.
[2]Chen F,Dudhia J.2001.Coupling an Advanced Land Surface Hydrology Model with the Penn State NCAR MM5 Modeling System.Part I:Model Implementation and Sensitivity[J].Mon Wea Rev,129(4):569-585.
[3]Dai A,Trenberth K E,Karl T R.2010.Effects of clouds,soil moisture,precipitation,and water vapor on diurnal temperature range[J].J Climate,12(8):2451-2473.
[4]Dong S,Xu Y,Zhou B,et al.2015.Assessment of indices of temperature extremes simulated by multiple CMIP5 models over China[J].Adv Atmos Sci,32(8):1077-1091.
[5]Gao Y,Vano J A,Zhu C,et al.2011a.Evaluating climate change over the Colorado River basin using regional climate models[J].J Geophys Res Atmos,116(13):1016-1022.
[6]Gao Y,Xue Y,Peng W,et al.2011b.Assessment of dynamic downscaling of China regional summer climate using regional climate model[J].Adv Atmos Sci,28(5):1077-1098.
[7]Gao Y,Leung L R,Salathé E P,et al.2012.Moisture flux convergence in regional and global climate models:Implications for droughts in the southwestern United States under climate change[J].Geophys Res Lett,39(9):L09711-L09715.
[8]Gao Y,Lan C,Zhang Y.2014.Changes in moisture flux over the Tibetan Plateau during 1979-2011 and possible mechanisms[J].J Climate,27(5):1876-1893.
[9]Gao Y,Xu J,Chen D.2015a.Evaluation of WRF mesoscale Climate Simulations over the Tibetan Plateau during 1979-2011[J].J Climate,28(7):2823-2841.
[10]Gao Y,Leung L R,Zhang Y,et al.2015b.Changes in moisture flux over the Tibetan Plateau during 1979-2011:Insights from a high resolution simulation[J].J Climate,28(10):4185-4197.
[11]Giorgi F,Mearns L O.1991.Approaches to the simulation of regional climate[J].Reviews of Geophysics,29(2):191-216.
[12]Grell G A,Devenyi D.2002.A generalized approach to parameterizing convection combining ensemble and data assimilation techniques[J].Geophys Res Lett,29(14):1693-1697.
[13]Hong S Y,Kanamitsu M.2014.Dynamical downscaling:Fundamental issues from an NWP point of view and recommendations[J].Asia-Pacific Journal of Atmospheric Sciences,50(1):83-104.
[14]Hong S,Dudhia J,Chen S H.2004.A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation[J].Mon Wea Rev,132:103-120.
[15]Hong S,Noh Y,Dudhia J.2006.A new vertical diffusion package with an explicit treatment of entrainment processes[J].Mon Wea Rev,134:2318-2341.
[16]Immerzeel W W,Beek L P H V,Bierkens M F P.2010.Climate change will affect the Asian water towers[J].Science,328(5984):1382-1385.
[17]IPCC.2001.Climate Change 2001:The Scientific Basis[R]//Houghton J T,Ding Y,Griggs D J,et al,eds.Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge,UK and New York,USA:Cambridge University Press,881.
[18]IPCC.2013.Climate Change 2013:The Physical Science Basis[R]//Stocker T F,Qin D,Plattner G K,et al,eds.Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge,UK and New York,USA:Cambridge University Press,1535.
[19]Kharin V V,Zwiers F W,Zhang X,et al.2013:Changes in temperature and precipitation extremes in the CMIP5 ensemble[J].Climatic Change,119(2):345-357.
[20]Kala J,Andrys J,Lyons T J,et al.2014.Sensitivity of WRF to driving data and physics options on a seasonal time-scale for the southwest of Western Australia[J].Climate Dyn,44(3-4):633-659.
[21]Luca A D,Elía R D,Laprise R.2015.Challenges in the quest for added value of regional climate dynamical downscaling[J].Current Climate Change Reports,1(1):10-21.
[22]Niu G,Yang Z,Mitchell K E,et al.2011.The community Noah land surface model with multiparameterization options (Noah-MP):1.Model description and evaluation with local-scale measurements[J].J Geophys Res,116(D12):1248-1256.
[23]Orlowsky B,Seneviratne S I.2012.Global changes in extreme events:regional and seasonal dimension[J].Climatic Change,110(3-4):669-696.
[24]Palatella L,Miglietta M M,Paradisi P,et al.2010.Climate change assessment for Mediterranean agricultural areas by statistical downscaling[J].Natural Hazards & Earth System Sciences,10(7):1647-1661.
[25]Rasmussen R,Liu C,Ikeda K,et al.2011.High-resolution coupled climate runoff simulations of seasonal snowfall over Colorado:A process study of current and warmer climate[J].J Climate,24(12):3015-3048.
[26]Soares P M M,Cardoso R M,Miranda P M A,et al.2012.WRF high resolution dynamical downscaling of ERA-Interim for Portugal[J].Climate Dyn,39(9-10):2497-2522.
[27]Wang Y,Ruby L L,Mcgregor J L,et al.2004.Regional climate modeling:Progress,challenges,and prospects[J].J Meteor Soc Japan,82(6):1599-1628.
[28]Xia Y,Ek M,Sheffield J,et al.2013.Validation of Noah-simulated soil temperature in the North American land data assimilation system phase 2[J].J Appl Meteor Climatol,52(2):455-471.
[29]Xue Y,Janjic Z,Dudhia J,et al.2014.A review on regional dynamical downscaling in intraseasonal to seasonal simulation/prediction and major factors that affect downscaling ability[J].Atmos Res,147(1):68-85.
[30]Xu J,Shi Y,Gao X.2012.Changes in extreme events as simulated by a high-resolution regional climate model for the next 20-30 years over China[J].Atmos Oceanic Sci Lett,6(6):483-488.
[31]Xu Z,Yang Z.2012.An improved dynamical downscaling method with GCM bias corrections and its validation with 30 years of climate simulations[J].J Climate,25(18):6271-6286.
[32]Yang Z,Niu G,Mitchell K E,et al.2011.The community Noah land surface model with multiparameterization options (Noah-MP):2.Evaluation over global river basins[J].J Geophys Res:Atmospheres,116(12):1248-1256.
[33]Yin H,Donat M G,Alexer L V,et al.2015.Multi-dataset comparison of gridded observed temperature and precipitation extremes over China[J].Inter J Climatol,35(10):2809-2827.
[34]You Q,Kang S,Aguilar E,et al.2008.Changes in daily climate extremes in the eastern and central Tibetan Plateau during 1961-2005[J].J Geophys Res:Atmospheres,113(7):1639-1647.
[35]李凯,高艳红,Chen Fei,等.2015.植被根系对青藏高原中部土壤水热过程影响的模拟[J].高原气象,34(3):624-654.Li Kai,Gao Yanhong,Chen Fei,et al.2015.Simulation of impact of roots on soil moisture and surface fluxes over Central Qinghai-Xizang Plateau[J].Plateau Meteor,34(3):624-654.DOI:10.7522/j.issn.1000-0534.2015.00035.
[36]汪凯,叶红,唐立娜,等.2010.气温日较差研究进展:变化趋势及其影响因素[J].气候变化研究进展,6(6):417-423.Wang Kai,Ye Hong,Tang Lina,et al.2010.Research progresses on diurnal temperature range:Variation trend and influential factors[J].Adv Climate Change Res,6(6):417-423.
[37]王冀,江志红,宋洁,等.2008.基于全球模式对中国极端气温指数模拟的评估[J].地理学报,63(3):227-236.Wang Yi,Jiang Zhihong,Song Jie,et al.2008.Evaluating the simulation of the GCMS on the extreme temperature indices in China[J].Acta Geographica Sinica,63(3):227-236.
[38]吴国雄,段安民,张雪芹,等.2013.青藏高原极端天气气候变化及其环境效应[J].自然杂志,35(3):167-171.Wu Guoxiong,Duan Anming,Zhang Xueqin,et al.2013.Extreme weather and climate changes and its environmental effects over the Tibetan Plateau[J].Chinese J Nature,35(3):167-171.
[39]伍红雨,杜尧东.2010.1961-2008年华南地区极端气温的非对称变化[J].生态学杂志,29(11):2241-2248.Wu Hongyu,Du Yaodong.2010.Asymmetric changes of extreme temperature in South China in 1961-2008[J].Chinese J Ecology,29(11):2241-2248.
[40]许建伟,高艳红.2014.WRF模式对夏季黑河流域气温和降水的模拟及检验[J].高原气象,33(4):937-946.Xu Jianwei,Gao Yanhong.2014.Validation of summer surface air temperature and precipitation simulation over Heihe River Basin[J].Plateau Meteor,33(4):937-946.DOI:10.7522/j.issn.1000-0534.2013.00149.
[41]杨志刚,建军,洪建昌.2014.1961-2010年西藏极端降水事件时空分布特征[J].高原气象,33(1):37-42.Yang Zhigang,Jian Jun,Hong Jianchang.2014.Temporal and spatial distribution of extreme precipitation events in Tibet during 1961-2010[J].Plateau Meteor,33(1):37-42.DOI:10.7522/j.issn.1000-0534.2013.00147.
[42]郑然,李栋梁,蒋元春,等.2015.全球变暖背景下青藏高原气温变化的新特征[J].高原气象,34(6):1539-1539.Zheng Ran,Li Dongliang,Jiang Yuanchun,et al.2015.New characteristics of temperature change over Qinghai-Xizang Plateau on the background of global warming[J].Plateau Meteor,34(6):1539-1539.DOI:10.7522/j.issn.1000-0534.2014.00123.
文章导航

/