合理估计背景场误差协方差矩阵(B)是做好变分同化的关键环节。利用控制变量随机扰动法(RandomCV)、增长模繁殖法(BGM)及NMC法等3种背景场样本模拟方法,基于WRFDA系统计算B矩阵,对B矩阵的特征及其对同化预报效果的影响进行了研究。B矩阵的特征分析和单点观测试验表明,NMC法与RandomCV法得到的B矩阵误差方差较大,在同化中观测的权重更大;RandomCV法得到的B矩阵,背景场误差中变量的长度尺度更大,说明同化中观测的水平影响范围更大。连续循环同化和预报试验表明:应用RandomCV法计算得到的B矩阵分析与预报的效果明显优于系统自带的以及BGM法得到的B矩阵,且效果与NMC法相当。与NMC方法相比,采用RandomCV方法产生背景场样本具有时间和人力成本相对低的优点。
A reasonable background error covariance(B)is the key to data assimilation.Three sample error simulation techniques for calculating B,such as,Randomized Control Variables(RandomCV),Breeding of Growing Modes(BGM)and the NMC method,are used to simulate the background error,and different B are gotusing the WRFDA system,then the statistical characteristics of the background error covariance and their impacts on analysis and forecasting are discussed.The results show that there is more significant background error amplitude in NMC and RandomCV than in BGM,so the observation will carries a bigger weight in data assimilation when NMC and RandomCV are chosen,and the length-scale of RandomCV is the biggest,so the influence range of observation is wider when RandomCV is used.The background error covariance of RandomCV is generated from perturbing the initial condition by the CV3 in WRF model,which achieves almost the similar effect as NMC and better than CV3,but a lower computational and manual cost than NMC.
[1]Barker D M,Huang W,Guo Y R,et al.2004.A three-dimensional variational data assimilation system for MM5:implementation and initial results[J].Mon Wea Rev,132(4):897-914.
[2]Barker D,Huang X Y,Liu Z,et al.2012.The weather research and forecasting model's community variational/ensemble data assimilation system:WRFDA[J].Bull Amer Meteor Soc,93(6):831-843.
[3]Berre L,Desroziers G.2010.Filtering of background error variances and correlations by local spatial averaging:A review[J].Mon Wea Rev,138(10):3693-3720.
[4]Chen Y,Rizvi S R H,Huang X Y,et al.2013.Balance characteristics of multivariate background error covariances and their impact on analyses and forecasts in tropical and Arctic regions[J].Meteor Atmos Phys,121(1):79-98.
[5]Evensen G.2003.The ensemble Kalman filter:Theoretical formulation and practical implementation[J].Ocean Dynamics,53(3):343-367.
[6]Michel Y,Auligné T.2010.Inhomogeneous background error modeling and estimation over Antarctica [J].Mon Wea Rev,138(6):2229-2252.
[7]Parrish D F,Derber J C.1992.The National Meteorological Center's spectral statistical-interpolation analysis system[J].Mon Wea Rev,120(8):1747-1763.
[8]Pereira M B,Berre L.2006.The use of an ensemble approach to study the background error covariances in a global NWP model[J].Mon Wea Rev,134(9):2466-2489.
[9]Wang H,Sun J,Zhang X,et al.2013.Radar data assimilation with WRF 4D-Var.Part I:System development and preliminary testing[J].Mon Wea Rev,141(7):2224-2244.
[10]曹小群,黄思训,张卫民,等.2008.区域三维变分同化中背景误差协方差的模拟[J].气象科学,28(1):8-14.Cao Xiaoqun,Huang Sixun,Zhang Weiming,et al.2008.Modelling background error covariance in regional 3D-VAR[J].Scientia Meteor Sinica,28(1):8-14.
[11]陈耀登,曾腊梅,Huang Xiangyu,等.2014.纬度依赖背景场误差协方差及其对台风同化和预报的影响研究[J].热带气象学报,30(3):465-474.Chen Yaodeng,Zeng Lamei,Huang Xiangyu,et al.2014.A study of latitude-dependent background error covariance and its impacts for typhoon data assimilation and forcast[J].J Trop Meteor,30(3):465-474.
[12]范水勇,张朝林,仲跻芹.2006.MM5三维变分系统在北京地区冷暖季背景场误差的对比分析[J].高原气象,25(5):855-861.Fan Shuiyong,Zhang Chaolin,Zhong Jiqin.2006.Contrast analysis of background error of MM5 3DVAR System in cold and warm seasons in Beijing[J].Plateau Meteor,25(5): 855-861.
[13]何光碧,彭俊,屠妮妮.2015.基于高分辨率地形数据的模式地形构造与数值试验[J].高原气象,34(4):910-922.He Guangbi,Peng Jun,Tu Nini.2015.Terrain construction and experiment for numerical model based on high resolution terrain data[J].Plateau Meteor,34(4):910-922.DOI:10.7522/j.issn.1000-0534.2014.00022.
[14]邱晓滨,邱崇践.2009.混合误差协方差用于集合平方根滤波同化试验[J].高原气象,28(6):1399-1407.Qiu Xiaobing,Qiu Chongjian.2009.The suitability test of ensemble square root filter with hybrid background error covariance[J].Plateau Meteor,28(6):1399-1407.
[15]谭燕,陈葆德.2014.多种扰动组合的热带气旋路径集合预报技术研究[J].高原气象,33(4):1012-1021.Tan Yan,Chen Baode.2014.Study of multiple perturb tropical cyclone ensemble forecast[J].Plateau Meteor,33(4):1012-1021.DOI:10.7522/j.issn.1000-0534.2013.00068.
[16]文小航,吕世华,董文杰,等.2014.西北干旱区绿洲—戈壁资料同化数据集的建立与分析[J].高原气象,33(1):66-79.Wen Xiaohang,Lü Shihua,Dong Wenjie,et al.2014.Establishment and analysis of assimilation dataset of oasis-gobi system over an arid region in Northwestern China[J].Plateau Meteor,33(1):66-79.DOI:10.7522/j.issn.1000-0534.2013.00073.
[17]肖玉华,何光碧,陈静,等.2011.区域集合预报增长模繁殖扰动方法研究[J].高原气象,30(1):94-102.Xiao Yuhua,He Guangbi,Chen Jing,et al.2011.Study on perturbing method in regional BGM ensemble prediction system[J].Plateau Meteor,30(1):94-102.
[18]庄照荣,薛纪善,朱宗申,等.2006.非线性平衡方案在三维变分同化系统中的应用[J].气象学报,64(2):137-148.Zhuang Zhaorong,Xue Jishan,Zhu Zongshen,et al.2006.Application of nonlinear balance scheme in three-dimensional variational data assimilation[J].Acta Meteor Sinica,64(2):137-148.