论文

青藏高原东南缘气象要素Anusplin和Cokriging空间插值对比分析

  • 谭剑波 ,
  • 李爱农 ,
  • 雷光斌
展开
  • 中国科学院成都山地灾害与环境研究所, 成都 610041;2. 中国科学院大学, 北京 100049

收稿日期: 2015-01-14

  网络出版日期: 2016-08-28

基金资助

中国科学院战略先导性科技专项-碳专项(XDA05050105);中国科学院委托研究与专项咨询服务课题(KFJ-EW-STS-020-02);国家自然科学基金项目(41271433);中国科学院对外合作重点项目(GJHZ201320)

Contrast on Anusplin and Cokriging Meteorological Spatial Interpolation in Southeastern Margin of Qinghai-Xizang Plateau

  • TAN Jianbo ,
  • LI Ainong ,
  • LEI Guangbin
Expand
  • Institute of Mountain Hazards and Environment, Chengdu 610041, China;2. University of the Chinese Academy of Sciences, Beijing 100049, China

Received date: 2015-01-14

  Online published: 2016-08-28

摘要

选取地形起伏度巨大的青藏高原东南缘为研究区,利用该研究区96个气象站点,结合高程数据,分别采用Cokriging和Anusplin空间插值方法,获取2010年250 m分辨率的年均温度和年累计降水插值曲面。并采用交叉验证方法对比Anusplin与Cokriging插值精度,分析了误差的空间分布特征,重点对比两种插值曲面差异较大的区域精度优劣,评价两种方法在复杂地区的适用性。结果表明,Anusplin在复杂地表的插值表现优于Cokriging,其中Anusplin气温插值的均方差仅为0.82℃,而Cokriging的均方差为1.45℃;两者的降水插值精度基本一致,但Anusplin在气象要素空间异质性大的区域优于Cokriging。因此,与Cokriging相比,Anusplin更适合青藏高原东南缘复杂地表气象要素空间插值。

本文引用格式

谭剑波 , 李爱农 , 雷光斌 . 青藏高原东南缘气象要素Anusplin和Cokriging空间插值对比分析[J]. 高原气象, 2016 , 35(4) : 875 -886 . DOI: 10.7522/j.issn.1000-0534.2015.00037

Abstract

Meteorological data is the essential data of ecological, resources, environment, global change and other research areas. However, the meteorological in Mountain are rare and complex than in plain. And acquiring precise spatial grid meteorological data has been a difficult task in this area. Anusplin and Cokriging interpolation method are one of the most common method that considering terrain’impacts during the Meteorological Spatial Interpolation. To ensure which one is more suit for complex area, we take the most complex mountain area (the Southeastern margin of the Qinghai-Xizang Plateau) as study area to compare the two methods. Based on Anusplin and Cokriging meteorological spatial interpolation method separately, combined with the terrain data and 96 meteorological stations in the southeastern margin of the Qinghai-Xizang Plateau region, 250 m resolution average temperature and total precipitation interpolated surfaces in 2010 was obtained. With the cross-validation method comparison method, the interpolation accuracy of Anusplin and Cokriging was compared, and the spatial distribution of errors was analyzed. Applying relevant information, accurate of the two methods in local area where the result of interpolation are quite different was qualitatively analyzed. Through this, the method which is more suit for this area is sought out and the applicability of Anusplin in this area was assessed. The results showed that, Anusplin interpolation outperformed Cokriging. In the comparing of mean square error(RMSE) of the interpolation of temperature and precipitation, Anusplin temperature is only 0.82℃ and Cokriging is 1.45℃, the RMSE of precipitation of the two methodes are consistent, but Anusplin are superior to Cokriging in the highly heterogeneous area. Therefore Anusplin can achieve better results than Cokriging, indicating that Anusplin is suit for the interpolation in Southeastern Margin of Qinghai-Xizang Plateau.

参考文献

[1]Atkinson P M, Lloyd C D.1998.Mapping precipitation in Switzerland with ordinary and indicator kriging.Special issue:Spatial interpolation comparison 97[J].Journal of Geographic Information and Decision Analysis, 2(1-2):72-86.
[2]Bookstein F L.1989.Principal warps:Thin-plate splines and the decomposition of deformations[J].IEEE Transactions on pattern analysis and machine intelligence, 11(6):567-585.
[3]Galway L.1990.Spline models for observational data[M]//Philadelphia:Society for Industrial and Applied Mathematics, 169.
[4]Hartkamp A D, De B K, Stein A, et al.1999.Interpolation techniques for climate variables[M].Mexico:DF (Mexico).CIMMYT, 26.
[5]Hijmans R J, Cameron S E, Parra J L, et al.2005.Very high resolution interpolated climate surfaces for global land areas[J].Int J Climatol, 25(15):1965-1978.
[6]Hutchinson M F, Xu T.2013.Anusplin Version 4.4 User Guide[M].Canberra:The Australian National University, 55.
[7]Hutchinson M F.1998.Interpolation of rainfall data with thin plate smoothing splines.Part I:Two dimensional smoothing of data with short range correlation[J].Journal of Geographic Information and Decision Analysis, 2(2):139-151.
[8]Hutchinson M, Gessler P.1994.Splines-more than just a smooth interpolator[J].Geoderma, 62(1):45-67.
[9]Hutchinson M.1995.Interpolating mean rainfall using thin plate smoothing splines[J].International Journal of Geographical Information Systems, 9(4):385-403.
[10]Journel A G, Deutsch C V.1992.Geostatistical software library and user's guide[M].New York:Oxford University Press, 369.
[11]Knotters M, Brus D, Oude V J.1995.A comparison of kriging, co-kriging and kriging combined with regression for spatial interpolation of horizon depth with censored observations[J].Geoderma, 67(3):227-246.
[12]Kohavi R.2001.A Study of cross-validation and bootstrap for accuracy estimation and model selection[C]//International Joint Conference on Artificial Intelligence, 2001.1137-1143.
[13]Li A, Lei G, Zhang Z, et al.2014.China land cover monitoring in mountainous regions by remote sensing technology-Taking the Southwestern China as a case[C]//Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International.
[14]Thomas A.2002.Seasonal and spatial variation of evapotranspiration in the mountains of Southwest China[J].Journal of Mountain Research, 20(4):385-393.
[15]程宸, 王晓云, 苗世光, 等.2014.城市下垫面对北京冬季气象要素影响的模拟研究[J].高原气象, 33(4):1045-1056.Cheng Chen, Wang Xiaoyun, Miao Shiguang, et al.2014.Study of different methods for simulating the impact of urban surface on meteorological elements in Beijing in winter[J].Plateau Meteor, 33(4):1045-1056.DOI:10.7522/j.issn.1000-0534.2013.00062.
[16]邓伟, 程根伟, 文安邦.2008.中国山地科学发展构想[J].中国科学院院刊, 23(2):156-161.Deng Wei, Cheng Genwei, Wen Anbang.2008.The conception of mountain science development in China[J].Bulletin of Chinese Academy of Sciences, 23(2):156-161.
[17]李新, 程国栋, 卢玲.2003.青藏高原气温分布的空间插值方法比较[J].高原气象, 22(6):565-573.Li Xin, Chen Guodong, Lu Ling.2003.Comparison study of spatial interpolation methods of air temperature over Qinghai-Xizang Plateau[J].Plateau Meteor, 22(6):565-573.
[18]刘正佳, 于兴修, 王丝丝, 等.2012.薄盘光滑样条插值中三种协变量方法的降水量插值精度比较[J].地理科学进展, 31(1):56-62.Liu Zhengjia, Yu Xingxiu, Wang Sisi, et al.2012.Comparative analysis of three covariates methods in thin-plate smoothing splines for interpolating precipitation[J].Progress in Geograhy, 31(1):56-62.DOI:10.11820/dlkxjz.2012.01.008.
[19]刘志红, Tim R M, Li Lingtao, 等.2008a.基于ANUSPLIN的时间序列气象要素空间插值[J].西北农林科技大学学报:自然科学版, 36(10):227-234.Liu Zhihong, Tim R M, Li Lingtao, et al.2008a.Interpolation for time series of meteorological variables using ANUSPLIN[J].Journal of Northwest A & F University:Natural Science, 36(10):227-234.
[20]刘志红, Li Lingtao, Tim R M, 等.2008b.专用气候数据空间插值软件ANUSPLIN及其应用[J].气象, 34(2):92-100.Liu Zhihong, Li Lingtao, Tim R M, et al.2008.Introduction of the professional interpolation software for meteorology data:ANUSPLIN[J].Meteor Mon, 34(2):92-100.
[21]钱永兰, 吕厚荃, 张艳红.2010.基于ANUSPLIN软件的逐日气象要素插值方法应用与评估[J].气象与环境学报, 26(2):7-15.Qian Yonglan, Lü Houquan, Zhang Yanhong.2010.Application and assessment of spatial interpolation method on daily meteorological elements based on ANUSPLIN software[J].J Meteor Environ, 26(2):7-15.
[22]王思维, 刘勇, 朱超洪, 等.2011.青海省逐日地面气温数据不同插值方法的对比[J].高原气象, 30(6):1640-1646.Wang Siwei, Liu Yong, Zhu Chaohong, et al.2011.Contrast on different spatial interpolation methods of daily surface temperature data in terrain complex area, Qinghai Province[J].Plateau Meteor, 30(6):1640-1646.
[23]王智, 师庆东, 常顺利, 等.2012.新疆地区平均气温空间插值方法研究[J].高原气象, 31(1):201-208.Wang Zhi, Shi Qingdong, Chang Shunli, et al.2012.Study on spatial interpolation method of mean air temperature in Xinjiang[J].Plateau Meteor, 31(1):201-208.
[24]熊秋芬, 黄玫, 熊敏诠, 等.2011.基于国家气象观测站逐日降水格点数据的交叉检验误差分析[J].高原气象, 30(6):1615-1625.Xiong Qiufen, Huang Mei, Xiong Minquan, et al.2011.Cross-validation error analysis of daily gridded precipitation based on China meteorological observation[J].Plateau Meteor, 30(6):1615-1625.
[25]阎洪.2004.薄板光顺样条插值与中国气候空间模拟[J].地理科学, 24(2):163-169.Yan Hong.2004.Modeling spatial distribution of climate in China using thin plate smoothing spline interpolation[J].Scientia Geographica Sinica, 24(2):163-169.
[26]杨成芳, 周雪松, 李静, 等.2015.基于构成要素的一次切变线暴雪天气分析[J].高原气象, 34(5):1402-1413.Yang Chengfang, Zhou Xuesong, Li Jing, et al.2015.Study on shear snowstorm by ingredients-bBased methodology[J].Plateau Meteor, 34(5):1402-1413.DOI:10.7522/j.issn.1000-0534.2014.00108.
[27]张继飞, 邓伟, 刘邵权.2011.中国西南山区资源环境安全态势评价[J].地理研究, 30(12):2305-2315.Zhang Jifei, Deng Wei, Liu Shaoquan.2011.Quantitative assessment of resource and environment security:A case study in mountainous areas of Southwest China[J].Geographical Research, 30(12):2305-2315.DOI:10.11821/yj2011120018.
[28]张伟, 李爱农.2012.基于DEM的中国地形起伏度适宜计算尺度研究[J].地理与地理信息科学, 28(4):8-12.Zhang Wei, Li Ainong.2012.Study on the optimal scale for calculating the relief amplitude in China based on DEM[J].Geography and Geo-Information Science, 28(4):8-12.
[29]张一平, 张昭辉, 何云玲.2004.岷江上游气候立体分布特征[J].山地学报, 22(2):179-183.Zhang Yiping, Zhang Zhaohui, He Yunling.2004.Distribution of climatic elements in the upper reaches of Minjiang River[J].Journal of Mountain Science, 22(2):179-183.
[30]郑小波, 罗宇翔, 于飞, 等.2008.西南复杂山地农业气候要素空间插值方法比较[J].中国农业气象, 29(4):458-462.Zheng Xiaobo, Luo Yuxiang, Yu Fei, et al.2008.Climate division about brizilian upland rice (IAPAR9) plating on the support of GIS techniques[J].Agricultural Meteorology, 29(4):458-462.
[31]周婷婷, 陈文惠.2011.基于MODIS数据和气象观测数据的气温空间插值方法比较[J].地理科学进展, 30(9):1143-1151.Zhou Tingting, Chen Wenhui.2011.Comparation of the temperature spatial interpolation methods based on MODIS data and meteorological observation data[J].Progress in Geography, 30(9):1143-1151.DOI:10.11820/dlkxjz.2011.09.009.
[32]卓淑华.1986.峨眉山气候特征初论[J].乐山师专学报, (1):94-104.Zhuo Shuhua.1986.The primary conclusion of climate in Mt.Emei[J].Journal of Leshan Normal University, (1):94-104.
文章导航

/