论文

青藏高原中东部云量变化与气温的不对称升高

  • 王艺 ,
  • 伯玥 ,
  • 王澄海
展开
  • 兰州大学大气科学学院 甘肃省干旱气候变化与减灾重点实验室, 兰州 730000

收稿日期: 2014-11-27

  网络出版日期: 2016-08-28

基金资助

国家重点基础研究发展(973计划)项目(2013CBA01808);国家自然科学基金项目(91437217,41275061,41440035,41471034)

Relations of Cloud Amount to Asymmetric Diurnal Temperature Change in Central and Eastern Qinghai-Xizang Plateau

  • WANG Yi ,
  • BO Yue ,
  • WANG Chenghai
Expand
  • Key Laboratory for Arid Climatic Change and Disaster Reduction of Gansu Province, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China

Received date: 2014-11-27

  Online published: 2016-08-28

摘要

利用ISCCP资料和地面观测资料,对1984-2009年青藏高原中东部云量和云状的气候特点进行了研究,并分析了日最高温度和日最低温度的变化特点及其与云量变化之间的关系。结果表明,青藏高原中东部地区中低云量呈明显的单峰型日变化,而高云云量日变化不显著;青藏高原地区日最低气温的上升速率与日最高气温不一致,即气温出现不对称升高。青藏高原中东部地区白天、夜间云的变化分别与日最高、最低气温的变化速率存在显著相关,并在云量变化与气温的不对称升高之间存在着正反馈机制。高原中东部地区不对称升温使得日出时的地气温差减小,并可能通过减弱对流作用使日出后的云量减少。云量的减少导致到达地面的太阳短波辐射增加,从而使得当日上午气温升高明显;中午,高云的增多与中低云的减少增加了地面接收的太阳短波辐射,导致了较高的日最高温度;而傍晚除卷云外,各类云的云量均出现增加,起到了减缓傍晚气温下降的作用,有利于出现较高的日最低温度。

本文引用格式

王艺 , 伯玥 , 王澄海 . 青藏高原中东部云量变化与气温的不对称升高[J]. 高原气象, 2016 , 35(4) : 908 -919 . DOI: 10.7522/j.issn.1000-0534.2015.00033

Abstract

By using ISCCP data and observation station data, the variations of cloud amount and cloud types are investigated in Central and Eastern Qinghai-Xizang Plateau (QXP) from 1984 to 2009; and the relationship between daily maximum/minimum temperature and cloud amount are analyzed. The results show that the diurnal variations of cloud amount at low-mid-level in QXP appears obviously unimodal types, but the diurnal variations of high-cloud amounts are not obviously. The warming rates of daily maximum/minimum temperature in TP are different, i.e, so called asymmetric diurnal temperature change. Diurnal/nocturnal cloud amount and daily maximum/minimum temperature have a distinct relation over Central and Eastern QXP, which have a positive feedback mechanism. The asymmetric temperature change reduces the difference of temperature between land and atmosphere in the morning, then the convection weakens, which may cause cloud amounts decreasing after sunrise. It will lead to much more solar shortwave radiation reaches the ground and the faster process of air warming in the morning. The decreasing of low-mid-cloud amounts and increasing of high-cloud amounts at noon increase the solar radiation of reaches the ground and causes a warmer daily maximum temperature. Cloud amounts of total cloud increase at dusk except cirrus, which slows down the decreasing rate of temperature after sunset, which benefits to increase the daily minimum temperature.

参考文献

[1]Chen B D, Chao W C, Liu X.2003.Enhanced climatic warming in the Tibetan Plateau due to doubling CO<sub>2</sub>:a model study[J].Climate Dyn, 20(4):401-413.
[2]Chen S B, Liu Y F.Axel Thomas.2006.Climatic change on the Tibetan Plateau:potential evapotranspiration trends from 1961-2000[J].Climatic Change, 76(3-4):291-319.
[3]Chen T, Rossow W B, Zhang Y C.2000.Radiative effects of cloud-type variations[J].J Climate, 13(1):264-268.
[4]Duan A M, Wu G X.2005.Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia[J].Climate Dyn, 24(7-8):793-807.
[5]Duan A M, Wu G X.2006.Change of cloud amount and the climate warming on the Tibetan Plateau[J].Geophys Res Lett, 33(22):217-234.
[6]Easterling D R, Horton B, Jones P D, et al.1997.Maximum and minimum temperature trends for the globe[J].Science, 277(5324):364-367.
[7]Hansen J, Ruedy R, Sato M, et al.2010.Global surface temperature change[J].Rev Geophys, 48(4):7362-7388.
[8]IPCC.2013.Climate Change 2013:The Physical Science Basis[R].Working Group I Contribution to the 15<sup>th</sup> Assessment Report of the Intergovernmental Panel on Climate Change.
[9]Jones P D, Raper S C B, Bradley R S, et al.1986.Northern Hemisphere surface air temperature variations:1851-1984[J].J Climate Appl Meteor, 25(2):161-179.
[10]Kaiser D P.1998.Analysis of total cloud amount over China, 1951-1994[J].Geophys Res Lett, 25(19):3599-3602.
[11]Kaiser D P.2000.Decreasing cloudiness over China:An updated analysis examining additional variables[J].Geophys Res Lett, 27(15):2193-2196.
[12]Karl T R, Kukla G, Razuvayev V N, et al.1991.Global warming:Evidence for asymmetric diurnal temperature change[J].Geophys Res Lett, 18(12):2253-2256.
[13]Kaufman Y J, Koren I.2006.Smoke and pollution aerosol effect on cloud cover[J].Science, 313(5787):655-658.
[14]Li Y Q, Liu X D, Chen B D.2006.Cloud type climatology over the Tibetan Plateau:A comparison of ISCCP and MODIS/TERRA measurements with surface observations[J].Geophys Res Lett, 33(17):130-142.
[15]Lin B, Wielicki B A, Chambers L H, et al.2002.The iris hypothesis:A negative or positive cloud feedback?[J].J Climate, 15(1):2713-2715.
[16]Lindzen R S, Chou M D, Hou A Y.2001.Does the earth have an adaptive infrared iris?[J].Bull Amer Meteor Soc, 82(3):417-432.
[17]Liu J Y, Tian H Q, Liu M L, et al.2005.China's changing landscape during the 1990s:Large-scale land transformations estimated with satellite data[J].Geophys Res Lett, 32(2):L02405.DOI:10.1029/2004GL021649.
[18]Liu X D, Chen B D.2000.Climatic warming in the Tibetan Plateau during recent decades[J].Int J climatol, 20(14):1729-1742.
[19]Manabe S, Broccoli A J.1990.Mountains and arid climates of middle latitudes[J].Science, 247(4939):192-195.
[20]Ramanathan V, Cess R D, Harrison E F, et al.1989.Cloud-radiative forcing and climate:Results from the Earth Radiation Budget Experiment[J].Science, 243(4887):57-63.
[21]Rangwala I, Miller J R, Russell G L, et al.2010.Using a global climate model to evaluate the influences of water vapor, snow cover and atmospheric aerosol on warming in the Tibetan Plateau during the twenty-first century[J].Climate Dyn, 34(6):859-872.
[22]Rossow W B, Schiffer R A.1999.Advances in understanding clouds from ISCCP[J].Bull Amer Meteor Soc, 80(11):2261-2287.
[23]Stephens G L.2005.Cloud feedbacks in the climate system:A critical review[J].J Climate, 18(2):237-273.
[24]Svensmark H, Friis-Christensen E.1997.Variation of cosmic ray flux and global cloud coverage-a missing link in solar-climate relationships[J].Journal of Atmospheric and Solar-Terrestrial Physics, 59(11):1225-1232.
[25]Wang C H, Guo Y P.2012.Precipitable water conversion rates over the Qinghai-Xizang (Tibet) Plateau:changing characteristics with global warming[J].Hydrological Processes, 26(10):1509-1516.
[26]Wang C H, Yu L, Huang B.2012.The impact of warm pool SST and general circulation on increased temperature over the Tibetan Plateau[J].Adv Atmos Sci, 29(2):274-284.DOI:10.1007/s00376-011-1034-3.
[27]Wang C H, Zhang Z F, Tian W S.2011.Factors affecting the surface radiation trends over China between 1960 and 2000[J].Atmos Environ, 45(14):2379-2385.
[28]Wu G X.1984.The nonlinear response of the atmosphere to large-scale mechanical and thermal forcing[J].Atmos Sci, 41(16):2456-2476.
[29]Yanai M, Li C F, Song Z S.1992.Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon[J].J Meteor Soc Japan, 70(1B):319-351.
[30]You Q L, Kang S C, Aguilar E, et al.2008.Changes in daily climate extremes in the eastern and central Tibetan Plateau during 1961-2005[J].J Geophys Res, 113(D7):1639-1647.
[31]Yu R C, Wang B, Zhou T J.2004.Climate effects of the deep continental stratus clouds generated by the Tibetan Plateau[J].J Climate, 17(13):2702-2713.
[32]Zhang Y, Klein S A, Boyle J, et al.2010.Evaluation of tropical cloud and precipitation statistics of Community Atmosphere Model version 3 using CloudSat and CALIPSO data[J].J Geophys Res, 115(D12):1256-1268.
[33]丁守国, 石广玉, 赵春生.2004.利用ISCCP D2资料分析近20年全球不同云类云量的变化及其对气候可能的影响[J].科学通报, 49(11):1105-1111.Ding Shouguo, Shi Guangyu, Zhao Chunsheng.2004.Analyzing global trends of different cloud types and the their potential impacts on climate by using the ISCCP D2 dataset[J].Chinese Science Bulletin, 49(12):1301-1306.
[34]丁守国, 赵春生, 石广玉, 等.2005.近20年全球总云量变化趋势分析[J].应用气象学报, 16(5):670-677.Ding Shouguo, Zhao Chunsheng, Shi Guangyu, et al.2005.Analysis of global total cloud amount variation over the past 20 years[J].J Appl Meteor Sci, 16(5):670-678.
[35]杜川利, 余兴, 李星敏, 等.2012.过去60年中国秦岭地区云量变化及原因分析[J].高原气象, 31(5):446-455.Du Chuanli, Yu Xing, Li Xingmin, et al.2012.Analysis on cloudiness change in Qinling Mountain Region and its possible reason in past 60 years[J].Plateau Meteor, 31(5):446-455.
[36]段玮, 段旭, 徐开, 等.2015.从水汽角度对青藏高原东南侧高空探测布局的分析[J].高原气象, 34(2):307-317, Duan Wei, Duan Xu, Yang Jiakang, et al.2015.Research about radiosonde stations composition in southeast side of Qinghai-Xizang Plateau based on its water vapor[J].Plateau Meteor, 34(2):307-317.DOI:10.7522/j.issn.1000-0534.2014.00024.
[37]刘洪利, 朱文琴, 宜树华, 等.2003.中国地区云的气候特征分析[J].气象学报, 61(4):466-473.Liu Hongli, Zhu Wenqin, Yi Shuhua, et al.2003.Climatic analysis of the cloud over China[J].Acta Meteor Sinica, 61(4):466-473.
[38]刘健.2013.利用卫星数据分析青藏高原云微物理特性[J].高原气象, 32(1):38-45.Liu Jian.2013.Analysis on cloud microphysical property over Qinghai-Xizang Plateau using satellite data[J].Plateau Meteor, 32(1):38-45.DOI:10.7522/j.issn.1000-0534.2013.00005.
[39]孙玉婷, 高庆九, 闵锦忠.2013.再分析温度资料与西藏地区冬, 夏季观测气温的比较[J].高原气象, 32(4):909-920.Sun Yuting, Gao Qingjiu, Min Jinzhong.2013.Comparison of reanalysis data and observation about summer/winter surface air temperature in Tibet[J].Plateau Meteor, 32(4):909-920.DOI:10.7522/j.issn.1000-0534.2012.00087.
[40]田磊, 孙艳桥, 胡文东, 等.2013.银川地区大气水汽, 云液态水含量特性的初步分析[J].高原气象, 32(6):1774-1779.Tian Lei, Sun Yanqiao, Hu Wendong, et al.2013.Preliminary analysis of the characteristics of atmosphere water vapor and cloud liquid water in Yinchuan area[J].Plateau Meteor, 32(6):1774-1779.DOI:10.7522/j.issn.1000-0534.2012.00164.
[41]王澄海, 崔洋.2011.东亚夏季风建立前青藏高原地气温差变化特征[J].气候与环境研究, 16(5):586-596.Wang Chenghai, Cui Yang.2011.Characteristics of the difference of temperature between surface and atmosphere over the Tibetan Plateau in the early stage of east Asian summer monsoon onset[J].Climate Environ Res, 16(5):586-596.
[42]王澄海, 董文杰, 韦志刚.2001.青藏高原季节性冻土年际变化的异常特征[J].地理学报, 56(5):523-531.Wang Chenghai, Dong Wenjie, Wei Zhigang.2001.The feature of seasonal frozen soil in Qinghai-Tibet Plateau[J].Acta Geogeraphica Sinica, 56(5):523-531.
[43]王澄海, 李健, 许晓光.2012.中国近50年气温变化准3年周期的普遍性及气温未来的可能变化趋势[J].高原气象, 31(1): 126-136.Wang Chenghai, Li Jian, Xu Xiaoguang.2012.Universality of quasi-3-year period of temperature in last 50 years and change in next 20 years in China[J].Plateau Meteor, 31(1):126-136.
[44]韦志刚, 黄荣辉, 董文杰.2003.青藏高原气温和降水的年际和年代际变化[J].大气科学, 27(2):157-170.Wei Zhigang, Huang Ronghui, Dong Wenjie.2003.Interannual and interdecadal variations of air temperature and precipitation over the Tibetan Plateau[J].Chinese J Atmos Sci, 27(2):157-170.
[45]魏丽, 钟强.1997.青藏高原云的气候学特征[J].高原气象, 16(1):10-15.Wei Li, Zhong Qiang.1997.Characteristics of cloud clmatology over Qinghai-Xizang Plateau[J].Plateau Meteor, 16(1):10-15.
[46]杨溯, 石广玉, 王标, 等.2013.全球"变暗"和"变亮"时期中国地面温度变化研究[J].高原气象, 32(4):993-999.Yang Shuo, Shi Guangyu, Wang Biao, et al.2013.Characteristics of surface temperature in China during global‘dimming’and‘brightening’periods[J].Plateau Meteor, 32(4):993-999.DOI:10.7522/j.issn.1000-0534.2012.00095.
[47]叶笃正, 高由禧.1979.青藏高原气象学[M].北京:科学出版社, 122-146.Ye Duzheng, Gao Youxi.1979.Meteorology of the Tibetan Plateau[M].Beijing:Science Press, 122-146.
[48]翟盘茂, 任福民.1997.中国近四十年最高最低温度变化[J].气象学报, 55(4):418-429.Zhai Panmao, Ren Fumin.1997.On changes of China smaxmum and minmum temperatures in the recent 40 years[J].Acta Meteor Sinica, 55(4):418-429.
[49]张飞民, 王澄海.2014.利用WRF-3DVAR同化常规观测资料对近地层风速预报的改进试验[J].高原气象, 33(3):675-685.Zhang Feimin, Wang Chenghai.2014.Experiment of surface-layer wind forecast improvement by assimilating conventional data with WRF-3DVAR[J].Plateau Meteor, 33(3):675-685.DOI:10.7522/j.issn.1000-0534.2012.00198.
[50]朱玉祥, 丁一汇, 刘海文.2009.青藏高原冬季积雪影响我国夏季降水的模拟研究[J].大气科学, 33(5):903-915.Zhu Yuxiang, Ding Yihui, Liu Haiwen.2009.Simulation of the influence of winter snow depth over the Tibetan Plateau on summer rainfall in China[J].Chinese J Atmos Sci, 33(5):903-915.
文章导航

/