论文

云贵高原东段初夏辐合线锋生型暴雨研究

  • 杨秀庄 ,
  • 杜小玲 ,
  • 吴古会 ,
  • 汪超
展开
  • 贵州省气象台, 贵阳 550002;2. 贵州省山地气候与资源重点实验室, 贵阳 550002

收稿日期: 2014-10-20

  网络出版日期: 2016-08-28

基金资助

中国气象局预报员专项(CMAYBY2014-064);西南区域重大业务项目(2014-3);中国气象局南方暴雨创新团队;西南区域强降水创新团队项目

Convergence Line Frontogenesis Type Rainstorm in Early Summer in the Eastern Section of the Yunnan-Guizhou Plateau

  • YANG Xiuzhuang ,
  • DU Xiaoling ,
  • WU Guhui ,
  • WANG Chao
Expand
  • Guizhou Meteorological Observatory, Guiyang 550002, China;2. Guizhou key Laboratory of Mountain Climate and Resources, Guiyang 550002, China

Received date: 2014-10-20

  Online published: 2016-08-28

摘要

利用NCEP 1°×1°再分析资料、探空资料和红外TBB卫星资料对2012年5月11-12日一场典型的初夏暴雨展开分析。结果表明,此次暴雨过程属于贵州典型的辐合线锋生型暴雨类型,地面中尺度辐合线和850 hPa切变线耦合是对流发展的主要原因,中尺度对流系统在云图上表现为一MCS对流云团自西向东移动。整个暴雨过程中,贵州大部具有高温高湿的层结不稳定特征,低层维持正涡度辐合,高层维持负涡度辐散。锋生函数揭示此类型暴雨天气过程存在明显的锋生现象,水平辐散项F2是引起地面锋生主要的动力因子,而水平辐散项F2和水平变形项F3对850 hPa锋生有明显的正贡献。用气块理论及其运动学方法来分析对流的触发机制,发现对流的触发与自由对流高度LFC、天气尺度环境场水平辐合的强度、垂直方向辐合高度、辐合持续时间有关。

本文引用格式

杨秀庄 , 杜小玲 , 吴古会 , 汪超 . 云贵高原东段初夏辐合线锋生型暴雨研究[J]. 高原气象, 2016 , 35(4) : 920 -933 . DOI: 10.7522/j.issn.1000-0534.2015.00008

Abstract

The convergence line frontogenesis is one of the causes of the rainstorm in the Eastern Section of the Yunnan-Guizhou Plateau, a typical Convergence Line Frontogenesis Type Rainstorm weather was analyzed which was happened from 11 to 12 May 2012, using 1°×1° reanalysis data of the NCEP/NCAR, sounding data and TBB data of FY-2E. The results show that it is a really typical Convergence Lines Frontogenesis Type Rainstorm in Guizhou, Coupling between mesoscale convergence line and shear line at low-level is the main reason for the development of convection. The mesoscale convective systems triggered due to convection move from west to east as a mesoscale clouds in the Satellite Images. The atmospheric stratification is unstable with high-temperature and high humidity in the process of the typical rainstorm all the time. The strong southwest airflow on 700 hPa and 850 hPa provides a better moisture transport condition for heavy rain produced.Positive vorticity and convergence are maintained on low-levels, negative vorticity and convergence divergence are maintained on high-levels. Frontogenesis function reveals the phenomenon of frontogenesis is existed obviously between the ground and 800 hPa, gradually decreases with height. horizontal divergence term F2 is main power factor causing Frontogenesis on the surface, the horizontal divergence term F2 and horizontal deformation term F3 have a significant positive contribution causing Frontogenesis on 850 hPa. Using theory of air blocks and method of kinematics to analyze convection, the trigger mechanism of convection is related of LFC, horizontal convergence intensity of synoptic-scale environmental field, convergence vertical height, convergence duration.

参考文献

[1]Gao Shouting.2000.The instability of the vortex sheet along the Shear 1ine[J].Adv Atmos Sci, 17(4):523-537.
[2]Hoskins B J, Bret H F P.1972.Atmospheric frontogenesis model:Mathematical formulation and solution[J].J Atmos Sci, 29:11-37.
[3]KatoK.1989.Seasonal transition the lower level circulation systems around the Baiu Front in China in 1979 and its relation to the Northern Summer monsoon[J].J Meteor Soc Japan, 679(2):249-265.
[4]陈忠明, 闵文彬, 崔春光, 等.2007a.暴雨中尺度涡旋系统发生发展的诊断[J].暴雨灾害, 26(1):29-34.Chen Zhongming, Ming Wenbin, Cui Chun guang, et al.2007a.Diagnostic analysis on the formation and deveopment of meso-scale vortex systems[J].Torrentiat Rain And Disaster, 26(1):29-34.
[5]陈忠明, 杨康权.2009a.2003年7月4-5日梅雨锋暴雨维持的诊断分析[J].高原气象, 28(5):1316-1325.Chen Zhongming, Yang Hangquan.2009a.Diagnostic analysis on maintenance mechanism of meiyu front rainstorm during 4-5 July 2003[J].Plateau Meteor, 28(5):1316-1325.
[6]陈忠明, 杨康权, 伍红雨, 等.2009b.湿斜压热动力耦合强迫激发辐合增长和暴雨维持的一种机制[J].物理学报, 58(6):4362-4371.Chen Zhongming, Yang Hangquan, Wu Hongyu, et al.2009b Mechanism of heavy rainfall maintenance and increment in convergence excited by coupling force s between dynamic and thermodynamic fields[J].Acta Physica Sinice, 58(6):4362-4371.
[7]陈忠明.2007a.暴雨激发和维持的正、斜压强迫机制的理论研究[J].大气科学, 31(2):291-295.Chen Zhongming.2007a.Effects of barotropic and baroclinic forces on the excitation and maintenance for torrential rain[J].Atmos Sci, 31(2):291-295.
[8]陈忠明.2007b.湿斜压大气中暴雨中尺度系统发展的一种可能机制[J].高原气象, 26(2):233-239.Chen Zhongming.2007b.A mechanism of mesoscale heavy rain system development in moisture baroclinic atmosphere[J].Plateau Meteor, 26(2):233-239.
[9]杜小玲.2012.2012年贵州暴雨的中尺度环境场分析及短期预报着眼点[J].气象, 39(7):861-873.Du Xiaoling.2012.Mesoscale ambient field analysis of torrential rains and the forecast key points in gui zhou in 2012[J].Meteor Mon, 39(7):861-873.
[10]杜小玲, 彭芳, 吴古会, 等.2013a.应用新型辐散方程诊断"6.28"关岭大暴雨的激发和维持机制[J].高原气象, 32(3):728-738.Du Xiaoling, Peng Fang, Wu Guhui, et al.2013a.The excitation and maintenance of ‘6.28’ Guanling torrential rain by using new divergence equation[J].Plateau Meteor, 32(3):728-738, DOI:10.7522/j.issn.1000-0534.2012.00068.
[11]杜小玲, 杨静, 彭芳, 等.2013b.贵州望谟初夏暴雨环境场和物理量场合成分析[J].高原气象, 32(5):1400-1403.Du Xiaoling, Yang Jing, Peng Fang, et al.2013b.Synthetic analyses on environmental and physical field of rainstorm in early summer in Wangmo, Guizhou[J].Plateau Meteor, 32(5):1400-1403, DOI:10.7522/j.issn.1000-0534.2012.00131.
[12]高守亭, 赵思雄, 周晓平, 等.2003.次天气尺度及中尺度暴雨系统研究进展[J].大气科学, 27(6):618-627.Gao shouting, Zhao Sixiong, Zhou Xiaoping, et al.2003.Progress of research on sub-synoptic scale and mesoscale torrential rain systems[J].Atmos Sci, 27(6):618-627.
[13]李登文, 杨静, 乔琪.2008.2006-06-13贵州省望谟县大暴雨的诊断分析[J].南京气象学院学报, 31(4):511-519.Li Dengwen, YangJing, QiaoQi.2008.Diagnostic analysis of 2006-06-13 torrential rain in Wangmo, Guizhou[J].J Nanjing Insti Meteor, 31(4):511-519.
[14]李矜霄, 何萍, 钟瑞, 等.2014.近50年云贵高原楚雄市日照时数变化特征及其成因分析[J].高原气象, 33(2):407-412.Li Jinxiao, He Ping, Zhong Rui, et al.2014.Analysis of variation characteristics and causes of sunshine duration at Chuxiong in Yungui Plateau in last 50 years[J].Plateau Meteor, 33(2):407-412.DOI:10.7522/j.issn.1000-0534.2013.00050.
[15]乔林, 陈涛, 路秀娟.2009.黔西南一次中尺度暴雨的数值模拟诊断研究[J].大气科学, 33(3):537-550.Qiao Lin, Chen Tao, Lu Xiujuan.2009.A numerical simulation analysis of a mesoscale rainstorm system in southwest of Guizhou Province[J].Atmos Sci, 33(3):37-550.
[16]杨静, 杜小玲, 齐大鹏, 等.2015.云贵高原东段山地MCC的普查和降水特征[J].高原气象, 34(5):1249-1260.Yang Jing, Du Xiaoling, Qi Dapeng, et al.2015.MCC survey and rainfall characteristic in east mountain of Yunnan-Guizhou Plateau[J].Plateau Meteor, 34(5):1249-1260.DOI:10.7522/j.issn.1000-0534.2014.00060.
[17]杨康权, 张琳, 肖递祥, 等.2013.四川盆地西部一次大暴雨过程的中尺度特征分析[J].高原气象, 32(2):357-367.Yang Kangquan, Zhang Lin, Xiao Dixiang.2013.Mesoscale analyses on a heavy rainstorm process in Western Sichuan Basin[J].Plateau Meteor, 32(2):357-367.DOI:10.7522/j.issn.1000-0534.2012.00035.
[18]周明飞, 杜小玲, 熊伟.2014.贵州初夏两次暖区暴雨的对比分析[J].气象, 40(2):186-195.Zhou Mingfei, Du Xiaoling, Xiong Wei.2014.Comparison analysis of two warm-area torrential rain systems in early summer in Guizhou[J].Meteorol Mon, 40(2):186-195.
[19]周玉淑, 邓国, 黄仪虹.2003.长江流域一次暴雨过程中的不稳定条件分析[J].气象学报, 61(3):323-333.Zhou Yushu, Deng Guo, Huang Yihong.2003.Analysis on instability condition during a torrential rain over Yangzi River Basin[J].Acta Meteor Sini, 61(3):323-333.
文章导航

/