论文

夏季巴丹吉林沙漠残余层与深厚对流边界层的关系研究

  • 赵采玲 ,
  • 吕世华 ,
  • 韩博 ,
  • 奥银焕 ,
  • 张少波 ,
  • 李照国
展开
  • 中国气象局兰州干旱气象研究所 甘肃省干旱气候变化与减灾重点实验室/中国气象局干旱气候变化与减灾重点开放实验室, 西北区域数值预报中心, 兰州 730000;2. 中国科学院寒区旱区环境与工程研究所 寒旱区陆面过程与气候变化重点实验室, 兰州 730000

收稿日期: 2014-12-02

  网络出版日期: 2016-08-28

基金资助

国家自然科学基金重点项目(41130961);公益性行业(气象)科研专项(GYHY201506001);国家自然科学基金青年项目(41405020,41405015,40205005)

Relationship between the Convective Boundary Layer and Residual Layer over Badain Jaran Desert in Summer

  • ZHAO Cailing ,
  • LYU Shihua ,
  • HAN Bo ,
  • AO Yinhuan ,
  • LI Zhaoguo ,
  • ZHANG Shaobo
Expand
  • Key Laboratory of Arid Climatic Change and Reducing Disaster of Gansu Province/Key Open Laboratory of Arid Climatic Change and Reducing Disaster of China Meteorological Administration, Institute of Arid Meteorology, China Meteorological Administration, Northwestern Regional Center of Numerical Weather Prediction, Lanzhou 730000, China;2. Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China

Received date: 2014-12-02

  Online published: 2016-08-28

摘要

利用2012年7月“巴丹吉林沙漠陆-气相互作用及其对区域气候的影响研究”实验所得到的观测资料和中尺度气象模式WRF,对夏季巴丹吉林沙漠对流边界层高度发展的特征及其影响因素进行了研究。结果表明:(1)2012年7月在巴丹吉林沙漠连续观测到厚度超过3500 m的深厚对流边界层,其最大高度可达4000 m以上;当这种深厚对流边界层出现之前,当地中低层大气(1000~4000 m)存在近中性的残余层,而在没有近中性残留层出现时,即便地表感热通量较大,当天最大对流边界层高度却明显偏低;(2)WRF模式模拟结果表明残余层稳定度和对流边界层高度之间的负相关关系在空间区域成立,残余层位温直减率与当地对流边界层高度在时间和空间分布上都呈现显著的负相关关系;残余层位温直减率与对流边界层高度的空间相关系数最大值可达-0.51;(3)观测和模拟结果均表明残余层稳定度会直接影响由感热通量产生的对流边界层的发展效率,进而影响对流边界层的最大高度。通过研究发现,除感热通量外,近中性的残余层是巴丹吉林地区深厚对流边界层出现的关键条件之一。

本文引用格式

赵采玲 , 吕世华 , 韩博 , 奥银焕 , 张少波 , 李照国 . 夏季巴丹吉林沙漠残余层与深厚对流边界层的关系研究[J]. 高原气象, 2016 , 35(4) : 1004 -1014 . DOI: 10.7522/j.issn.1000-0534.2015.00080

Abstract

The characteristics and influencing factors of convective boundary layer height development of the Badain Jaran Desert were analyzed based on the observation data of July 2012 and WRF model. The result shows that: (1) Over the Badain Jaran desert, a convective boundary layer (CBL) that deeper than 4000 m has been observed on July 2012. It is also found that there was a nearly neutral residual layer in the morning before a deep CBL which was approximate 4000 m can be formed in the afternoon. When there was no residual layer in the morning as in 7 July, although the surface sensible heat flux was still intensive, the maximum depth of CBL on that day was only 1900 m. (2) The simulated maximum depth of CBL in different day varies much even the surface sensible heat flux changes little. After comparing the spatial distribution and temporal variation, it is found that the lapse rate within the residual layer owns not only a stronger time correlation but also a more significant pattern correlation with the CBL depth than the surface sensible heat flux. The maximum spatial correlation coefficient between the lapse rate within the residual layer and CBL height is -0.51. (3) Observations and simulated results show that the stratification status in the residual layer can directly affect the CBL development efficiency which is forced by sensible hear flux, and then affect the maximum CBL depth. Therefore, this study suggests that in addition to the sensible heat flux, the stratification status in the residual layer also plays an essential role for the development of CBL in the Badain Jaran desert in summer.

参考文献

[1]Andreae M O, Schmid O, Yang H, et al.2008.Optical properties and chemical composition of the atmospheric aerosol in urban Guangzhou, China[J].Atmos Environ, 42(25):6335-6350.
[2]Bonan G B.1997.Effects of land use on the climate of the United States[J].Climatic Change, 37(3):449-486.
[3]Cuesta J, Marsham J H, Parker D J, et al.2009.Dynamical mechanisms controlling the vertical redistribution of dust and the thermodynamic structure of the West Saharan atmospheric boundary layer during summer[J].Atmos Sci Lett, 10(1):34-42.
[4]Fan S, Wang B, Tesche M, et al.2008, Meteorological conditions and structures of atmospheric boundary layer in October 2004 over Pearl River Delta area[J].Atmos Environ, 42(25):6174-6186.
[5]Flamant C, Chaboureau J P, Parker D, et al.2007.Airborne observations of the impact of a convective system on the planetary boundary layer thermodynamics and aerosol distribution in the inter tropical discontinuity region of the West African monsoon[J].Quart J Roy Meteor Soc, 133(626):1175-1189.
[6]Fochesatto G J, Drobinski P, Flamant C, et al.2001.Evidence of dynamical coupling between the residual layer and the developing convective boundary layer[J].Bound-Layer Meteor, 99(3):451-464.
[7]Freire L S, Dias N L.2013.Residual layer effects on the modeling of convective boundary layer growth rates with a slab model using FIFE data[J].J Geophys Res, 118(23):12869-12878.
[8]Garcia-Carreras L, Parker D, Marsham J, et al.2014.The turbulent structure and diurnal growth of the Saharan atmospheric boundary layer[J].J Atmos Sci, 72(2):693-713.
[9]Han B, Lü S, Ao Y.2012.Development of the convective boundary layer capping with a thick neutral layer in Badanjilin:Observations and simulations[J].Adv Atmos Sci, 29(1):177-192.
[10]Han B, Zhao C, Lü S, et al.2015.A diagnostic analysis on the effect of the residual layer for the convective boundary layer development near Mongolia by using 20th century reanalysis data[J].Adv Atmos Sci, 32(6):807-820.
[11]Hong S Y, Pan H L.1996.Nonlocal boundary layer vertical diffusion in a medium-range forecast model[J].Mon Wea Rev, 124(10):2322-2339.
[12]Johansson C, Bergstr?m H.2005.An auxiliary tool to determine the height of the boundary layer[J].Bound-Layer Meteor, 115(3):423-432.
[13]Ma M, Pu Z, Wang S, et al.2011.Characteristics and numerical simulations of extremely large atmospheric boundary-layer heights over an arid region in north-west China[J].Bound-Layer Meteor, 140(1):163-176.
[14]Marcazzan G, Ceriani M, Valli G, et al.2003.Source apportionment of PM10 and PM2.5 in Milan (Italy) using receptor modelling[J].Sci Total Environ, 317(1):137-147.
[15]Marsham J, Parker D, Grams C, et al.2008.Observations of mesoscale and boundary-layer scale circulations affecting dust transport and uplift over the Sahara[J].Atmos Chem Phys, 8(23):6979-6993.
[16]Messager C, Parker D J, Reitebuch O, et al.2010.Structure and dynamics of the Saharan atmospheric boundary layer during the West African monsoon onset: Observations and analyses from the research flights of 14 and 17 July 2006[J].Quart J Roy Meteor Soc, 136(S1):107-124.
[17]Parker D J, Thorncroft C D, Burton R R, et al.2005.Analysis of the African easterly jet, using aircraft observations from the JET2000 experiment[J].Quart J Roy Meteor Soc, 131(608):1461-1482.
[18]Pleim J E.2007a.A combined local and nonlocal closure model for the atmospheric boundary layer.Part I:Model description and testing[J].J Appl Meteor, 46(9):1383-1395.
[19]Pleim J E.2007b.A combined local and nonlocal closure model for the atmospheric boundary layer.Part II:Application and evaluation in a mesoscale meteorological model[J].J Appl Meteor, 46(9):1396-1409.
[20]Reen B, Stauffer D, Davis K.2014.Land-surface heterogeneity effects in the planetary boundary layer[J].Bound-Layer Meteor, 150(1):1-31.
[21]Stull R B.1988.An introduction to boundary layer meteorology[M].Dordrecht:Kluwer Academic Publishers, 2.
[22]Stensrud D J.1993.Elevated residual layers and their influence on surface boundary-layer evolution[J].J Atmos Sci, 50(14):2284-2293.
[23]Yi C, Davis K J, Berger B W, et al.2001.Long-term observations of the dynamics of the continental planetary boundary layer[J].J Atmos Sci, 58(10):1288-1299.
[24]奥银焕, 吕世华, 韩博, 等.2013.巴丹吉林沙漠夏季近地层微气象特征分析[J].高原气象, 32(6):1682-1691.Ao Yinhuan, Lü Shihua, Han Bo, et al.2013.Analysis on micrometeorology characteristics in surface layer over Badan Jaran Desert in summer[J].Plateau Meteor, 32(6):1682-1691.DOI:10.7522/j.issn.1000-0534.2012.00158.
[25]杜川利, 唐晓, 李星敏, 等.2014.城市边界层高度变化特征与颗粒物浓度影响分析[J].高原气象, 33(5):1383-1392.Du Chuanli, Tang Xiao, Li Xingmin, et al.2014.Calculations of planetary boundary layer height and its relationship with particle size concentration in Xi'an City[J].Plateau Meteor, 33(5):1383-1392.DOI:10.7522/j.issn.1000-0534.2013.00077.
[26]李建刚, 奥银焕, 吕世华, 等.2014.巴丹吉林沙漠与小尺度湖泊夏季地表特征对比分析[J].高原气象, 33(3):647-657.Li Jiangang, Ao Yinhuan, Lü Shihua, et al.2014.Comparative analysis of surface radiation and energy characteristics between desert and small-scale lake on Badain Jaran in summer[J].Plateau Meteor, 33(3):647-657.DOI:10.7522/j.issn.1000-0534.2013.00045.
[27]刘建刚.2010.巴丹吉林沙漠湖泊和地下水补给机制[J].水资源保护, 26(2):18-23.Li Jiangang.2010.Recharge mechanisms of lakes and groundwater in Badain Jaran Desert[J].Water Resource Protection, 26(2):18-23.
[28]马金珠, 李丁, 李相虎, 等.2004.巴丹吉林沙漠包气带Cl-示踪与气候记录研究[J].中国沙漠, 24(6):674-679.Ma Jinzhu, Li Ding, Li Xianghu, et al.2004.Chloride as a tracer and climatic change record from unsaturated zone of Badain Jaran Desert[J].J Desert Res, 24(6):674-679.
[29]许建伟, 高艳红.2014.WRF模式对夏季黑河流域气温和降水的模拟及检验[J].高原气象, 33(4):937-946.Xu Jianwei, Gao Yanhong.2014.Validation of summer surface air temperature and precipitation simulation over Heihe River Basin[J].Plateau Meteor, 33(4):937-946.DOI:10.7522/j.issn.1000-0534.2013.00149.
[30]郁淑华, 高文良, 彭骏, 等.2015.高原低涡移出高原后持续的对流层中层环流特征[J].高原气象, 34(6):1540-1555.Yu Shuhua, Gao Wenliang, Peng Jun, et al.2015.Circulation features of sustained departure plateau vortex at middle tropospheric level[J].Plateau Meteor, 34(6):1540-1555.DOI:10.7522/j.issn.1000-0534.2014.00134.
[31]张强, 王胜.2008.西北干旱区夏季大气边界层结构及其陆面过程特征[J].气象学报, 66(4):599-608.Zhang Qiang, Wang Sheng.2008.A study on atmospheric boundary layer structure on a clear day in the arid region in northwest China[J].Acta Meteor Sinica, 66(4):599-608.
[32]张强, 张杰, 乔娟, 等.2011.我国干旱区深厚大气边界层与陆面热力过程的关系研究[J].中国科学:地球科学, 41(9):1365-1374.Zhang Qiang, Zhang jie, Qiao Juan, et al.2011.Relationship of atmospheric boundary layer depth with thermodynamic process at the land surface in arid regions of China[J].Sci China Earth Sci, 41(9):1365-1374.
[33]张强.2007.极端干旱荒漠地区大气热力边界层厚度研究[J].中国沙漠, 27(4):614-620.Zhang Qiang.2007.Study on depth of atmospheric thermal boundary layer in extreme arid desert regions[J].J Desert Res, 27(4):614-620.
[34]赵采玲, 吕世华, 李照国, 等.2014.夏季巴丹吉林沙漠陆面热状况对边界层高度影响的模拟实验[J].高原气象, 33(6):1526-1533.Zhao Cailing, Lü Shihua, Li Zhaoguo, et al.2014.Numerical simulation of influence of land surface thermal condition on Badain Jaran Desert atmospheric boundary layer height in summer[J].Plateau Meteor, 33(6):1526-1533.DOI:10.7522/j.issn.1000-0534.2013.00160.
[35]赵建华, 张强, 王胜, 等.2013.西北干旱区夏季大气边界层逆温强度和高度的频率密度研究[J].高原气象, 32(2):2377-2386.Zhao Jianhua, Zhang Qiang, Wang Sheng, et al.2013.Studies on frequency density of inversion intensity and height of atmospheric boundary layer in arid region of Northwest China[J].Plateau Meteor, 32(2):2377-2386.
[36]赵建华, 张强, 王胜.2011.西北干旱区对流边界层发展的热力机制模拟研究[J].气象学报, 69(6):1029-1037.Zhao Jianhua, Zhang Qiang, Wang Sheng.2011.A simulate study of the mechanism for development of the convective boundary layer in the arid zone of Northwest China[J].Acta Meteor Sinica, 69(6):1029-1037.
[37]朱金峰, 王乃昂, 陈红宝, 等.2010.基于遥感的巴丹吉林沙漠范围与面积分析[J].地理科学进展, 29(9):1087-1094.Zhu Jinfeng, Wang Nai'ang, Chen Hongbao, et al.2010.Study on the boundary and the area of Badain Jaran Desert based on remote sensing Imagery[J].Progress in Geography, 29(9):1087-1094.
文章导航

/