论文

基于激光雷达和微波辐射计观测确定混合层高度方法的比较

  • 杨富燕 ,
  • 张宁 ,
  • 朱莲芳 ,
  • 朱焱
展开
  • 南京大学大气科学学院, 南京 210046;2. 贵州省山地环境气候研究所, 贵阳 550002;3. 苏州市气象局, 苏州 215131

收稿日期: 2014-08-25

  网络出版日期: 2016-08-28

基金资助

国家重点基础研究发展计划(973)项目(2011CB952002);国家自然科学基金项目(41375014)

Comparison of the Mixing Layer Height Determination Methods using Lidar and Microwave Radiometer

  • YANG Fuyan ,
  • ZHANG Ning ,
  • ZHU Liangfang ,
  • ZHU Yan
Expand
  • School of Atmospheric Science, Nanjing University, Nanjing 210046, China;2. Guizhou Institute of Moutainous Environment and climate, Guigang 550002, China;3. Suzhou Meteorological Bureau, Suzhou 215131, China

Received date: 2014-08-25

  Online published: 2016-08-28

摘要

利用苏州地区2010年1月4,7,16日和2月4日4天的激光雷达及微波辐射计观测资料,比较了不同遥感手段探测晴天大气混合层高度的差异,发现试验期间该地区的混合层高度在300~1500 m之间。利用梯度法、标准偏差法、小波法从激光雷达数据中提取混合层高度并进行了对比,结果表明三种方法都能较好地反演混合层高度并且一致性较好,三者差异主要存在于大气边界层的发展和消亡阶段;梯度法和小波法结果无明显差异,而标准偏差法结果稍高于其他方法。在此基础上,利用微波辐射计探测的大气温度,使用温度梯度法估算大气混合层高度,并与激光雷达探测结果进行了比较,结果表明,大多数情况下激光雷达探测结果高于微波辐射计观测结果;两种遥感手段有较好的相关性,相关系数为0.76。激光雷达同微波辐射计结果存在差异,尤其是在边界层的发展和消散阶段,这是由两种遥感手段探测原理不同造成的。

本文引用格式

杨富燕 , 张宁 , 朱莲芳 , 朱焱 . 基于激光雷达和微波辐射计观测确定混合层高度方法的比较[J]. 高原气象, 2016 , 35(4) : 1102 -1111 . DOI: 10.7522/j.issn.1000-0534.2015.00045

Abstract

Methods for determining the mixing layer height based on a lidar and a microwave radiometer were compared during four sunny days (on 4, 7, 18 January and 4 February, 2010) in Suzhou. The observed mixing layer height varied between 300 m and 1500 m. The gradient method, the standard deviation method and the wavelet method were applied to extracting the mixing layer height from the lidar. Results showed that the three methods can determine the mixing layer height well and have a good agreement among them, the differences mainly occurred during the development and disappearance of the mixing layer, results by the gradient method and the wavelet method show little difference, while the standard deviation method results are slightly higher than others. The results determined by the temperature gradient method using microwave radiometer data were compared with the results determined using the lidar observations; there was a good correlation between the results and the correlation coefficient was 0.76. The results from the lidar were higher than these from microwave observations. The difference between the two observation devices was because of the different detection principles, especially in the development and dissipation stage of the boundary layer.

参考文献

[1]Brooks I M.2003.Finding boundary layer top:Application of a wavelet covariance transform to lidar backscatter profiles[J].J Atmos Oceanic Technol, 20(8):1092-1105.
[2]Cohn S A, Angevine W M.2000.Boundary layer height and entrainment zone thickness measured by lidars and wind-profiling radars[J].J Appl Meteor, 39(8):1233-1247.
[3]Comerón A, Sicard M, Rocadenbosch F.2013.Wavelet correlation transform method and gradient method to determine aerosol layering from lidar returns:some comments[J].J Atmos Oceanic Technol, 30(6):1189-1193.
[4]Davis K J, Gamage N, Hagelberg C R, et al.2000.An objective method for deriving atmospheric structure from airborne lidar observations[J].J Atmos Oceanic Technol, 17(11):1455-1468.
[5]Eresmaa N, H rk nen J, Joffre S M, et al.2012.A three-step method for estimating the mixing height using ceilometer data from the Helsinki Testbed[J].J Appl Meteor climatol, 51(12):2172-2187.
[6]Eresmaa N, Karppinen A, Joffre S M, et al.2006.Mixing height determination by ceilometer[J].Atmos Chem Phys, 6(6):1485-1493.
[7]Hennemuth B, Lammert A.2006.Determination of the atmospheric boundary layer height from radiosonde and lidar backscatter[J].Bound-Layer Meteor, 120(1):181-200.
[8]Holzworth G C.1964.Estimates of mean maximum mixing depths in the contiguous United States[J].Mon Wea Rev, 92(5):235-242.
[9]Hooper W P, Eloranta E W.1986.Lidar measurements of wind in the planetary boundary layer: The method, accuracy and results from joint measurements with radiosonde and kytoon[J].J Climate Appl Meteor, 25(7):990-1001.
[10]Knupp K R, Coleman T, Phillips D, et al.2009.Ground-Based Passive Microwave Profiling during Dynamic Weather Conditions[J].J Atmos Oceanic Technol, 26(6):1057-1073.
[11]Mao M J, Jiang W M, Gu J Q, et al.2009.Study on the mixed layer entrainment zone, and cloud feedback based on lidar exploration of Nanjing city[J].Geophys Res Lett, 36, L04808.DOI:10.1029/2008 GL036768.
[12]Melfi S H, Spinhirne J D, Chou S H, et al.1985.Lidar observations of vertically organized convection in the planetary boundary layer over the Ocean[J].J Climate Appl Meteor, 24(8):806-821.
[13]Münkel C, Eresmaa N, R s nen J, et al.2007.Retrieval of mixing height and dust concentration with lidar ceilometer[J].BoundLayer Meteor, 124(1):117-128.
[14]Quan J N, Gao Y, Zhang Q, et al.2013.Evolution of planetary boundary layer under different weather conditions, and its impact on aerosol concentrations[J].Particuology, 11(1):34-40.
[15]Seibert P, Beyrich F, Gryning S E, et al.2000.Review and intercomparison of operational methods for the determination of the mixing height[J].Atmos Environ, 34(7):1001-1027.
[16]Steyn D G, Baldi M, Hoff R M.1999.The detection of mixed layer depth and entrainment zone thickness from lidar backscatter profiles[J].J Atmos Oceanic Technol, 16(7):953-959.
[17]Stull R B著, 杨长新译.1991.边界层气象学导论[M].北京:气象出版社.Stull R B.1991.An introduction to boundary layer meteorology[M].Beijing:Chinese Meterology Press.
[18]Wang Z, Cao X, Zhang L, et al.2012.Lidar measurement of planetary boundary layer height and comparison with microwave profiling radiometer observation[J].Atmos Meas Tech, 5(8):1965-1972.
[19]Zhang N, Chen Y, Zhao W J.2012.Lidar and microwave radiometer observation of planetary boundary layer structure under light wind weather[J].J Appl Remote Sens, 6(1):063513.DOI:10.1117/1.JRS.6.063513.
[20]陈燕, 蒋维楣.2006.城市建筑物对边界层结构影响的数值试验研究[J].高原气象, 25(5):824-833.Chen Yan, Jiang Weimei.2006.The numerical experiments of the effect of urban buildings on boundary layer structure[J].Plateau Meteor, 25(5):824-833.
[21]程水源, 席德立, 张宝宁, 等.1997.大气混合层高度的确定与计算方法研究[J].中国环境科学, 17(6):512-516.Cheng Shuiyuan, Xi Deli, Zhang Baoning, et al, 1997.Study on the determination and calculating method of atmospheric mixing layer height[J].China Environmental Science, 17(6):512-516.
[22]代成颖.2012.大气边界层顶部夹卷层特征及边界层高度研究[D].北京:中国科学院大气物理研究所.Dai Chengying.2012.Properties of the entrainment zone atop the atmospheric boundary layer and determination of the boundary layer height[D].Beijing:Institute of Atmospheric Physics, Chinese Academy of Sciences.
[23]杜荣强, 魏合理, 伽丽丽, 等.2011.基于地基微波辐射计的大气参数廓线遥感探测[J].大气与环境光学学报, 6(5):329-335.Du Rongqiang, Wei Heli, Qie Lili, et al, 2011.Remote-sensing of atmospheric parameter profiles from ground-based microwave radiometer[J].Journal of Atmospheric and Environmental Optics, 6(5):329-335.
[24]刘红燕.2011.三年地基微波辐射计观测温度廓线的精度分析[J].气象学报, 69(4):719-728.Liu Hongyan.2011.The temperature profile comparison between the ground-based microwave radiometer and the other instrument for the recent three years[J].Acta Meteor Sinica, 69(4):719-728.
[25]刘建忠, 张蔷.2010.微波辐射计反演产品评价[J].气象科技, 38(3):325-331.Liu Jianzhong, Zhang Qiang.2010.Evaluation and analysis of retrieval products of ground based microwave radiometer[J].Meteor Sci Technol, 38(3):325-331.
[26]邱贵强, 李华, 张宇, 等.2013.高寒草原地区边界层参数化方案的适用性评估[J].高原气象, 32(1):46-55.Qiu Guiqiang, Li Hua, Zhang Yu, et al.2013.Applicability research of planetary boundary layer parameterization scheme in WRF Model over the alpine grassland area[J].Plateau Meteor, 32(1):46-55.DOI:10.7522/j.issn.1000-0534.2013.00006.
[27]王琳, 谢晨波, 韩永, 等.2012.测量大气边界层高度的激光雷达数据反演方法研究[J].大气与环境光学学报, 7(4):241-247.Wang Lin, Xie Chenbo, Han Yong, et al, 2012.Comparison of retrieval methods of planetary boundary layer height from Lidar data[J].Journal of Atmospheric and Environmental Optics, 7(4):241-247.
[28]韦志刚, 陈文, 黄荣辉.2010.敦煌夏末大气垂直结构和边界层高度特征[J].大气科学, 34(5):905-913.Wei Zhigang, Chen Wen, Huang Ronghui.2010.Vertical atmospheric structure and boundary layer height in the summer clear days over Dunhuang[J].Chinese J Atmos Sci, 34(5):905-913.
[29]吴祖常, 董保群.1998.我国陆域最大混合层厚度的地理分布与季节变化[J].科技通报, 14(3):158-163.Wu Zuchang, Dong Baoqun.1998.Geographical distribution and seasonal variation of atmospheric maximum mixing depth over China[J].Bull Sci Technol, 14(3):158-163.
[30]徐安伦, 董保举, 刘劲松, 等.2010.洱海湖滨大气边界层结构及特征分析[J].高原气象, 29(3):637-644.Xu Anlun, Dong Baoju, Liu Jinsong, et al, 2010.Structure and characteristic of the atmospheric boundary layer in Erhai lakeside region of Dali[J].Plateau Meteor, 29(3):637-644.
[31]杨胜朋, 吕世华, 陈玉春, 等.2009.人为热源和城市绿化对冬季山谷城市边界层结构影响的数值模拟[J].高原气象, 28(2):268-277.Yang Shengpeng, Lü Shihua, Chen Yuchun, et al.2009.Simulation of effect of anthropogenic heat and afforestation urban boundary layer structure of valley city in winter[J].Plateau Meteor, 28(2):268-277.
[32]杨显玉, 文军.2012.扎陵湖和鄂陵湖大气边界层特征的数值模拟[J].高原气象, 31(4):927-934.Yang Xianyu, Wen Jun.2012.Numerical simulation of characteristic of atmospheric boundary layer over Lake Gyaring and Ngoring[J].Plateau Meteor, 31(4):927-934.
[33]岳平, 牛生杰, 张强, 等.2008.春季晴日蒙古高原半干旱荒漠草原地边界层结构的一次观测研究[J].高原气象, 27(4):757-763.Yue Ping, Niu Shengjie, Zhang Qiang, et al.2008.An observation study of atmosphere boundary layer characteristic over semi-arid desert grassland in Mongolia Plateau on clear day in spring[J], Plateau Meteor, 27(4):757-763.
[34]赵玲, 马玉芬, 张广兴, 等.2010.地基35通道微波辐射计观测资料的初步分析[J].沙漠与绿洲气象, 4(1):56-58.Zhao Ling, Ma Yufen, Zhang Guangxing, et al.2010.Analysis of measuring outcomes from Ground-Based 35-Channel microwave radiometer[J].Desert and Oasis Meteordogy, 4(1):56-58.
[35]周碧, 张镭, 隋兵, 等.2014.激光雷达探测兰州地区气溶胶的垂直分布[J].高原气象, 33(6):1545-1550.Zhou Bi, Zhang Lei, Sui Bing, et al.2014.Detection of aerosol vertical distribution using lidar in Lanzhou District[J].Plateau Meteor, 33(6):1545-1550.DOI:10.7522/j.issn.1000-0534.2013.00135.
文章导航

/