论文

青藏高原MODIS地表反照率反演结果的空间分布

  • 陈爱军 ,
  • 梁学伟 ,
  • 卞林根 ,
  • 刘玉洁
展开
  • 南京信息工程大学 气象灾害预报预警与评估协同创新中心, 南京 210044;南京信息工程大学 大气物理学院, 南京 210044;安徽省气象台, 合肥 230031;中国气象科学研究院, 北京 100081;国家卫星气象中心, 北京 100081

收稿日期: 2015-02-27

  网络出版日期: 2016-12-28

基金资助

国家自然科学基金项目(40875015);安徽省气象局预报员专项项目(kY201614)

Spatial Distribution Characteristics of MODIS Land Surface Albedo Inversions over the Qinghai-Xizang Plateau

  • CHEN Aijun ,
  • LIANG Xuewei ,
  • BIAN Lingen ,
  • LIU Yujie
Expand
  • Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China;School of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China;Anhui Meteorological Observatory, Hefei 230031, China;Chinese Academy of Meteorology Science, Beijing 100081, China;National Satellite Meteorology Center, Beijing 100081, China

Received date: 2015-02-27

  Online published: 2016-12-28

摘要

为了促进MODIS地表反照率产品的应用及其反演算法的改进,应用MODIS地表反照率反演质量数据MCD43B2,并结合数字海拔高程模型DEM(Digital Elevation Model)数据和MODIS地表覆盖类型数据MOD12Q1,统计分析了20032013年青藏高原MODIS地表反照率不同反演结果的空间分布情况,结果表明:(1)MODIS地表反照率全反演结果主要分布在中西部和北部,春季全反演结果的概率超过80%,夏季向西北收缩且概率降低,秋季高概率全反演结果的范围最大、冬季最小。(2)冬季高概率当量反演结果主要分布在青藏高原西北、东南两翼,其他季节主要分布在昌都、那曲、林芝、山南地区和拉萨市。(3)在山南地区中东部、林芝及其与昌都地区交界处构成的“入”字形区域,四季无反演结果的概率都比较高,最高可达100%。(4)全反演结果的概率随海拔的增加呈下降趋势,当量反演结果则相反,无反演结果的概率在各海拔区间都较恒定且不超过10%。(5)在三种主要地表类型中,开放灌木区和裸土稀疏植被区全反演结果的概率高于草地,约为70%;草地当量反演结果的概率最高,约为30%;三者无反演结果的概率大致相当,均不足10%。以上结果表明青藏高原地区MODIS地表反照率反演质量的空间分布具有较为明显的地域特征,并且与海拔和地表覆盖类型存在一定的联系。

本文引用格式

陈爱军 , 梁学伟 , 卞林根 , 刘玉洁 . 青藏高原MODIS地表反照率反演结果的空间分布[J]. 高原气象, 2016 , 35(6) : 1409 -1418 . DOI: 10.7522/j.issn.1000-0534.2015.00111

Abstract

In order to promote the application of MODIS (MODerate Imaging Spectra-radiometer) land surface albedo (LSA) and the improvement of its retrieval algorithm, the spatial distribution of MODIS retrievals over the Qinghai-Xizang Plateau (QXP) for different kind of retrieval quality with the MODIS LSA retrieval quality product MCD43B2 from 2003 to 2013 were statistically analyzed, as well as the digital elevation model (DEM) and the MODIS land surface cover classification product MOD12Q1. The results are as following:(1) The MODIS LSA full inversions (FI) are mainly located on the central and west regions, and the north regions of the QXP. The probability of FI over these regions is above 80% in spring. In summer, not only the area with high probability of FI shrinks to the north-west of the QXP, but also the probability decreases. The area with high probability of FI in autumn is the largest, while the smallest in winter. (2) Main areas with high probability of MODIS LSA magnitude inversions (MI) are distributed over the north-west and the south-east of the QXP in winter, while over Changdu Prefecture, Nagqu Prefecture, Nyingchi Prefecture, Shannan Prefecture and Lhasa City in the other three seasons. (3) The probability of no inversions (NI) for MODIS LSA is the highest over the Chinese character "into"-shaped area, which is formed in the central and east of Shannan Prefecture, Nyingchi Prefecture and its adjacent area of Changdu Prefecture. Moreover, the probability over this area is high over the four seasons and the highest is close to 100%. (4) The general trend for the probability of FI is decreasing as the increase of the elevation, while it is opposite for that of MI. The probability of NI is relatively stable and no more than 10% in each elevation range. (5) Among three main kinds of land cover type over the QXP, the probabilities of FI over the open shrubs and the naked (sparse vegetated) are around 70% and higher than that over the grassland. Accordingly, the probability of MI over the grassland is the highest and 30% or so. The probability of NI for these three kinds of land cover type is about same and no less than 10%. All above reveal that the spatial distribution of MODIS LSA retrieval quality over the QXP indicates obviously regional characteristics and it has a certain relationship with local altitude and surface cover type.

参考文献

[1]?Blackmon M, Boville B, Bryan F, et al. 2001. The community climate system model[J]. Bull Amer Meteor Soc, 82(11):2357-2376.
[2]Dai Y, Zeng X, Dickinson R E, et al. 2003. The common land model[J]. Bull Amer Meteor Soc, 84(8):1013-1023.
[3]Dickinson R E, Kennedy P J, Henderson-Sellers A. 1993. Biosphere-Atmosphere Transfer Scheme (BATS) version 1e as coupled to the NCAR community climate model[M]. National Center for Atmospheric Research, Climate and Global Dynamics Division.
[4]Henderson-Sellers A, Wilson M F. 1983. Surface albedo data for climatic modeling[J]. Rev Geophys, 21(8):1743-1778.
[5]Jin Y, Schaaf C B, Gao F, et al. 2003a. Consistency of MODIS surface bidirectional reflectance distribution function and albedo retrievals:1. Algorithm performance[J]. J Geophys Res:Atmospheres (19842012), 108(D5).
[6]Jin Y, Schaaf C B, Woodcock C E, et al. 2003b. Consistency of MODIS surface bidirectional reflectance distribution function and albedo retrievals:2. Validation[J]. J Geophys Res:Atmospheres (19842012), 108(D5).
[7]Liu J, Schaaf C, Strahler A, et al. 2009. Validation of Moderate Resolution Imaging Spectroradiometer (MODIS) albedo retrieval algorithm:Dependenceof albedo on solar zenith angle[J]. J Geophys Res:Atmospheres (19842012), 114(D1).
[8]Román M O, Schaaf C B, Woodcock C E, et al. 2009. The MODIS (Collection V005) BRDF/albedo product:Assessment of spatial representativeness over forested landscapes[J]. Remote Sensing Environ, 113(11):2476-2498.
[9]Román M O, Gatebe C K, Schaaf C B, et al. 2011. Variability in surface BRDF at different spatial scales (30~500 m) over a mixed agricultural landscape as retrieved from airborne and satellite spectral measurements[J]. Remote Sensing Environ, 115(9):2184-2203.
[10]Román M O, Gatebe C K, Shuai Y, et al. 2013. Use of in situ and airborne multi-angle data to assess MODIS-and Landsat-based estimates of directional reflectance and albedo[J]. Geoscience and Remote Sensing, IEEE Transactions on, 51(3):1393-1404.
[11]Schaaf C B, Gao F, Strahler A H, et al. 2002. First operational BRDF, albedo nadir reflectance products from MODIS[J]. RemoteSensing of Environment, 83(1):135-148.
[12]Schaaf C B, Liu J, Gao F, et al. 2011. Aqua and Terra MODIS albedo and reflectance anisotropy products[M]//Land Remote Sensing and Global Environmental Change. Springer New York:549-561.
[13]Sellers P J, Meeson B W, Hall F G, et al. 1995. Remote sensing of the land surface for studies of global change:Models-algorithms-experiments[J]. Remote Sensing Environ, 51(1):3-26.
[14]Stroeve J, Box J E, Gao F, et al. 2005. Accuracy assessment of the MODIS 16-day albedo product for snow:comparisons with Greenland in situ measurements[J]. Remote Sensing Environ, 94(1):46-60.
[15]Wang K, Liu J, Zhou X, et al. 2004. Validation of the MODIS global land surface albedo product using ground measurements in a semidesert region on the Tibetan Plateau[J]. J Geophys Res:Atmospheres (19842012), 109(D5).
[16]Wang K, Wang P, Liu J, et al. 2005. Variation of surface albedo and soil thermal parameters with soil moisture content at a semi-desert site on the western Tibetan Plateau[J]. Bound-Layer Meteor, 116(1):117-129.
[17]Wang Z, Schaaf C B, Chopping M J, et al. 2012. Evaluation of Moderate-resolution Imaging Spectroradiometer (MODIS) snow albedo product (MCD43A) over tundra[J]. Remote Sensing Environ, 117:264-280.
[18]Wang Z, Schaaf C B, Strahler A H, et al. 2014. Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods[J]. Remote Sensing Environ, 140(1):60-77.
[19]Zhang R, Koike T, Xu X, et al. 2012. A ChinaJapan cooperative JICA atmospheric observing network over the Tibetan Plateau (JICA/Tibet Project):An overviews[J]. J Meteor Soc Japan, 90C:1-16. DOI:10.2151/jmsj. 2012-C01.
[20]Chen Aijun, Bian Lingen, Liu Yujjie. 2009. Using MODIS Data to Retrieve Albedo over the Qinghai-Tibet Plateau[J]. J Nanjing Insti Meteor, 32(2):222-229.<br/>陈爱军, 卞林根, 刘玉洁. 2009. 应用MODIS资料反演青藏高原地区地表反照率[J]. 南京气象学院学报, 32(2):222-229.
[21]Chen Aijun, Liang Xuewei, Bian Lingen, et al. 2012a. Assessment on the accuracy of MODIS albedos over the Tibetan Plateau[J]. Trans Atmos Sci, 35 (6):664-672.<br/>陈爱军, 梁学伟, 卞林根, 等. 2012a. 青藏高原地区MODIS反照率的精度分析[J]. 大气科学学报, 35(6):664-672.
[22]Chen Aijun, Wang Fei, Bian Lingen, et al. 2012b. Study on difference between two kinds of MODIS albedo over the Qinghai-Xizang Plateau[J]. Plateau Meteor, 31(6):1479-1487.<br/>陈爱军, 王飞, 卞林根, 等. 2012b. 青藏高原地区MODIS反照率两种反演结果差异的对比分析[J]. 高原气象, 31(6):1479-1487.
[23]Chen Aijun, Liu Yujie, Bian Lingen, et al. 2012c. Analysis of the differences the two kinds of MODIS albedos over China[J]. Acta Meteor Sinica, 70(5):1119-1127.<br/>陈爱军, 刘玉洁, 卞林根, 等. 2012c. 中国地区MODIS反照率两种反演结果的比较[J]. 气象学报, 70(5):1119-1127.
[24]Chen Aijun, Liang Xuewei, Bian Lingen, et al. 2016a. Analysis on MODIS albedo retrieval quality over the Qinghai-Xizang Plateau[J]. Plateau Meteor, 35(2):277-284. DOI:10.7522/j. issn. 1000-0534.2015.00015.<br/>陈爱军, 梁学伟, 卞林根, 等. 2016a. 青藏高原MODIS地表反照率反演质量分析[J]. 高原气象, 35(2):277-284.
[25]Chen Aijun, Zhou Chan, Bian Lingen, et al. 2016b. Assessment on the accuracy of GlobAlbedo over the Northern Qinghai-Xizang Plateau[J]. Plateau Meteor, 35(4):887-894. DOI:10.7522/j. issn. 1000-0534.2015.00097.<br/>陈爱军, 周婵, 卞林根, 等. 2016b. 藏北高原 GlobAlbedo 地表反照率的精度分析[J]. 高原气象, 35(4):887-894.
[26]Fang Zongyi, Liu Yujie, Lin Manyun. 1996. The research and calculation of surface albedo over Tibetan Plateau from satellite data[J]. Acta Meteor Sinica, 54(5):580-589.<br/>方宗义, 刘玉洁, 林曼芸. 1996. 青藏高原地表反照率计算研究[J]. 气象学报, 54(5):580-589.
[27]Feng Chao, Gu Song, Zhao Liang, et al. 2010. Albedo characteristics of degraded grassland ecosystem in the source region of three rivers in QinghaiTibetan Plateau[J]. Plateau Meteor, 29(1):70-77.<br/>冯超, 古松, 赵亮, 等. 2010. 青藏高原三江源区退化草地生态系统的地表反照率特征[J]. 高原气象, 29(1):70-77.
[28]Li Yueqing, Zhao Xingbing, Deng Bo. 2010. Intensive observation scientific experiment of the southwest vortex in the summer of 2010[J]. Plateau Mount Meteor Res, 30(4):80-84.<br/>李跃清, 赵兴炳, 邓波. 2010.2010年夏季西南涡加密观测科学试验[J]. 高原山地气象研究, 30(4):80-84.
[29]Li Yueqing, Zhao Xingbing, Zhang Lihong, et al. 2012. Intensive observation scientific experiment of the southwest vortex in the summer of 2011[J]. Plateau Mount Meteor Res, 31(4):7-11.<br/>李跃清, 赵兴炳, 张利红, 等. 2012.2011年夏季西南涡加密观测科学试验[J]. 高原山地气象研究, 31(4):7-11.
[30]Li Ying, Hu Zeyong. 2007. A preliminary study on land-surface albedo in Northern Tibetan Plateau[J]. Plateau Meteor, 25(6):1034-1041.<br/>李英, 胡泽勇. 2007. 藏北高原地表反照率的初步研究[J]. 高原气象, 25(6):1034-1041.
[31]Editorial team of Anthologies of Tibetan Plateau meteorological experiment. 1984a. Anthologies of Tibetan Plateau meteorological experiment (1)[R]. Beijing:Science Press.<br/>《青藏高原气象科学实验文集》编辑组. 1984a. 青藏高原气象科学实验文集(一)[R]. 北京:科学出版社.
[32]Editorial team of Anthologies of Tibetan Plateau meteorological experiment. 1984b. Anthologies of Tibetan Plateau meteorological experiment (2)[R]. Beijing:Science Press.<br/>《青藏高原气象科学实验文集》编辑组. 1984b. 青藏高原气象科学实验文集(二)[R]. 北京:科学出版社.
[33]Editorial team of Anthologies of Tibetan Plateau meteorological experiment. 1987.Anthologies of Tibetan Plateau meteorological experiment (3)[R]. Beijing:Science Press.<br/>《青藏高原气象科学实验文集》编辑组. 1987. 青藏高原气象科学实验文集(三)[R]. 北京:科学出版社.
[34]Tao Shiyan, Chen Lianshou, Xu Xiangde, et al. 1999.The theoretical research progress of 2nd atmospheric science experiment on Tibetan Plateau (1-3)[M]. Beijing:Science Press.<br/>陶诗言, 陈联寿, 徐祥德, 等. 1999. 第二次青藏高原大气科学试验理论研究进展(一)、(二)、(三)[M]. 北京:气象出版社.
[35]Wu Rongsheng, Ma Yaoming. 2010. Comparative analysis on radiation characteristics in different areas over the Tibetan Plateau[J]. Plateau Meteor, 29(2):251-259.<br/>武荣盛, 马耀明. 2010. 青藏高原不同地区辐射特征对比分析[J]. 高原气象, 29(2):251-259.
[36]Xu Xingkui, Lin Chaohui. 2002. Remote sensing retrieval of surface monthly mean albedo in QinghaiXizang Plateau[J]. Plateau Meteor, 21(3):233-237.<br/>徐兴奎, 林朝晖. 2002. 青藏高原地表月平均反照率的遥感反演[J]. 高原气象, 21(3):233-237.
[37]Ye Duzheng, Gao Youxi. 1979. Meteorology of the QinghaiXizang Plateau[M]. Beijing:Science Press, 7-9.<br/>叶笃正, 高由禧. 1979. 青藏高原气象学[M]. 北京:科学出版社, 7-9.
[38]Yu Yu, Chen Hongbin, Xia Xiangao, et al. 2010. Comparison of surface albedo measurement with MODIS product at Namco station of Tibetan Plateau[J]. Plateau Meteor, 29(2):260-267.<br/>余予, 陈洪滨, 夏祥鳌, 等. 2010. 青藏高原纳木错站地表反照率观测与 MODIS 资料的对比分析[J]. 高原气象, 29(2):260-267.
[39]Zhang Jijia, Zhu Baozhen, Zhu Kangfu, et al. 1988. Advances in Meteorology of the QinghaiXizang Plateau[M]. Beijing:Science Press, 14-89.<br/>章基嘉, 朱抱真, 朱福康, 等. 1988. 青藏高原气象学进展[M]. 北京:科学出版社, 14-89.
[40]Zhang Renhe, Xu Xiangde. 2012. An applying platform for the new generation of the comprehensive atmospheric observing system over the Tibetan Plateau and its eastern region-a China-Japan Cooperative JICA Project[J]. Eng Sci, 14(9):102-112.<br/>张人禾, 徐祥德. 2012. 青藏高原及东缘新一代大气综合探测系统应用平台——中日合作JICA项目[J]. 中国工程科学, 14(9):102-112.
[41]Zhou Changyan, Zhang Hongjiao, Zhao Xingbing, et al. 2012. Overview of the observation network of the main Tibetan Plateau experiments of atmospheric sciences in recent decades[J]. Plateau Mount Meteor Res, 32(1):81-87.<br/>周长艳, 张虹娇, 赵兴炳, 等. 2012. 近三十多年青藏高原大气科学试验观测布局综述[J]. 高原山地气象研究, 32(1):81-87.
文章导航

/