论文

云雷达回波强度谱密度定标及云内大气垂直运动速度反演试验

  • 郑佳锋 ,
  • 刘黎平 ,
  • 刘艳霞 ,
  • 崔哲虎
展开
  • 中国气象科学研究院灾害天气国家重点实验室, 北京 100081;南京信息工程大学中国气象局气溶胶-云-降水重点开放实验室, 南京 210044;成都信息工程大学大气科学学院, 成都 610025

收稿日期: 2014-09-17

  网络出版日期: 2016-12-28

基金资助

国家自然科学基金项目(41175038,91337103);国家重点基础研究发展计划(973)项目(2012CB417202);公益性行业(气象)科研专项(GYHY201406001);江苏省研究生培养创新工程项目(KYLX_0839)

Cloud Radar Doppler Spectra Calibration and Air Vertical Velocity Retrieval Experiment

  • ZHENG Jiafeng ,
  • LIU Liping ,
  • LIU Yanxia ,
  • CUI Zhehu
Expand
  • State Key Lab of Severe Weather, Chinese Academy of Meteorological Science, Beijing 100081, China;Key Laboratory for Aerosol-Cloud-Precipition of China Meteorological Adiministration, Nanjing University of Information Science and Technology, Nanjing 210044, China;Chengdu University of Information Technology, School of Atmospheric Sciences, Chengdu 610225, China

Received date: 2014-09-17

  Online published: 2016-12-28

摘要

云内大气垂直运动在云动力和微物理过程中扮演了重要角色,云雷达功率谱数据是其反演的有效数据,但前提必需对谱线的回波强度进行准确定标,其中噪声电平的计算是关键步骤。本文首先提出了一种云雷达功率谱的模拟方法,利用模拟数据定量评估了三种噪声电平计算方法的准确性,对实测谱线回波强度进行了定标。基于以上方法,采用小粒子示踪法反演了2014年6月广东阳江对流云和层状云内的大气垂直运动速度,并提出了假定数浓度和直径下的谱线回波强度临界阈值,利用该阈值对反演结果进行定量检验。结果表明:(1)利用云雷达的高斯白噪声特征和云信号满足高斯分布特征,结合实测数据统计得到的涨落程度,可以模拟出给定谱参数的功率谱,模拟数据与实测十分相近,可作为功率谱定量研究的有效数据源。(2)三种噪声电平计算方法中,分段法的准确性和稳定性最好,最大速度法受噪声起伏的影响,客观法计算结果偏高,当谱宽和多普勒速度较大时客观法和最大速度法误差会达到很大。(3)谱线回波强度临界阈值的检验结果表明,该对流云内所有示踪谱线的回波强度均远小于临界阈值,云内100%距离库为被反演,反演结果可靠;该层状云内,除了少数距离库,大部分示踪谱线的回波强度在临界阈值以下,云内96.23%距离库可被反演,反演结果可靠。

本文引用格式

郑佳锋 , 刘黎平 , 刘艳霞 , 崔哲虎 . 云雷达回波强度谱密度定标及云内大气垂直运动速度反演试验[J]. 高原气象, 2016 , 35(6) : 1650 -1661 . DOI: 10.7522/j.issn.1000-0534.2015.00064

Abstract

Fine detection of cloud and precipitation is still a great interest topic in atmospheric research. In recent years, millimeter-wavelength cloud radars have become the major instrument for cloud and light-precipitation observation. Because of their short wavelengths, cloud radars have excellent sensitivity to small cloud droplets and ice crystals, can be configured to have high temporal and spatial resolutions, and can operate with antennas that have narrow beamwidths and limited sidelobes. In a vertically pointing mode, cloud radar can record the Doppler spectral data which can be benefited for the microphysical and dynamic study of cloud and precipitation system. As an important prerequisite, cloud radar Doppler spectra calibration is crucial for accurately calculating radar measurements, in result, this article present a calibration method for a new 35 GHz cloud radar, produced by Chinese Academy of Meteorological Sciences and plan to participate the 3td Tibetan Plateau Atmospheric Science Experiment from 2014. The accuracy of three radar noise-level compute method are assessed by using simulated data and spectra processing technologies are researched in this research. Another interesting work in this paper is the air vertical velocity retrieval by cloud radar Doppler spectra. At last, retrieval result and reliability of convective and stratiform cloud collected at Guangdong Yanjiang in June 2014 are verified and analyzed. Mainly conclusions are as follows:(1) base on gaussian characteristic of signal and white noise of cloud radar, combined with statistical fluctuation extents, the method can simulate the cloud spectra closed to real, and they can be used as an effective source data for spectra quantitative study. (2) The segment method is the most accurate and stable method, the max-speed method can be affected by noise fluctuations, the objective method is overrated as Doppler velocity and spectral width become large, as long as can cause an apparent error. (3) Inspection results by using the spectral line intensity threshold show that, all traced spectral line intensity in convective cloud are less than this threshold, 100% gates in cloud can be inverted and results are reliable. Apart from a few gates, most of traced spectral line intensity in stratiform cloud are less than this threshold too, 96% gates in cloud can be inverted reliably.

参考文献

[1]Battan L J. 1964. Some observations of vertical velocities and precipitation sizes in a thunderstorm[J]. J Appl Meteor,3(4):415-420.
[2]Babb D M,Verlinde J,Albrecht B A. 1999. Retrieval of cloud microphysical parameters from 94-GHz radar Doppler power spectra[J]. J. Atmos Oceanic Technol,16(5):489-503.
[3]Donaldson Jr R J. 1967. A preliminary report on Doppler radar observation of turbulence in a thunderstorm[R]. Air Force Cambridge Research Laboratories,Environ Res Papers,No. 255,19.
[4]Donaldson R J. 1972. Measurement of wind gradients in convective storms by Doppler radar[C]//Champaign-Urbana:Preprints Fifteenth Radar Meteorology Conference,22-26.
[5]Gossard E E,Snider J B,Clothiaux E E,et al. 1997. The potential of 8-mm radars for remotely sensing cloud drop size distributions[J]. J Atmos Oceanic Technol,14(1):76-87.
[6]Kollias P,Albrecht B A,Lhermitte R,et al. 2001. Radar observations of updrafts,downdrafts,and turbulence in fair-weather cumuli[J]. J Atmos Sci,58(13):1750-1766.
[7]Luke E P,Kollias P. 2013. Separating cloud and drizzle radar moments during precipitation onset using Doppler spectra[J]. J Atmos Oceanic Technol,30(8):1656-1671.
[8]Petitdidier M,Sy A,Garrouste A,et al. 1997. Statistical characteristics of the noise power spectral density in UHF and VHF wind profilers[J]. Radio Science,32(3):1229-1247.
[9]Hildebrand P H,Sekhon R S. 1974. Objective determination of the noise level in Doppler spectra[J]. J Appl Meteor,13(7):808-811.
[10]Rosenfeld D,Lohmann U,Raga G B,et al. 2008. Flood or drought:how do aerosols affect precipitation?[J]. Science,321(5894):1309-1313.
[11]Sekhon R S,Srivastava R C. 1971. Doppler radar observations of drop-size distributions in a thunderstorm[J]. J Atmos Sci,28(6):983-994.
[12]Shupe M D,Kollias P,Poellot M,et al. 2008. On deriving vertical air motions from cloud radar Doppler spectra[J]. J Atmos Oceanic Technol,25(4):547-557.
[13]Browning K A,Betts A,Jonas P R,et al. 1993. The GEWEX cloud system study(GCSS)[J]. Bull Amer Meteor Soc,74(3):387-399.
[14]Wu J,Wei M,Hang X,et al. 2014. The first observed cloud echoes and microphysical parameter retrievals by China's 94-GHz cloud radar[J]. J Meteor Res,28:430-443.
[15]Cheng Zhoujie,Wei Ming,Zhu Yaping,et al. 2014. Pseudo-color composite for polarimetric radar[J]. Plateau Meteor,33(5):1448-1456. DOI:10.7522/j. issn. 1000-0534.2013.00088.<br/>程周杰,魏鸣,朱亚平,等. 2014. 双偏振天气雷达探测量的伪彩合成[J]. 高原气象,33(5):1448-1456.
[16]Reseach on data processing and application of wind profile radar[D]. Nanjing:Nanjing University of Information Science &amp; Technology.<br/>胡明宝. 2012. 风廓线雷达数据处理与应用研究[D]. 南京:南京信息工程大学. Hu Mingbao. 2012.
[17]Huang Yimei,Zhou Yuquan. 2012. Analysis on cold front cloud structure from 95 GHz cloud radar data[J]. Plateau Meteor,31(4):1129-1138.<br/>黄毅梅,周毓荃. 2012.95 GHz云雷达对一次冷锋云系结构的观测分析[J]. 高原气象,31(4):1129-1138.
[18]Hui Jianxin,Wu Lei,Gao Yuchun,et al. 2012. Study of spectral moments estimations for wind-profiling radar based on maximum likelihood algorithm[J]. Meteor Sci Technol,40(1):9-14.<br/>惠建新,吴蕾,高玉春,等. 2012. 基于极大似然算法的风廓线雷达谱矩估计[J]. 气象科技,40(1):9-14.
[19]Liu Jun,Huang Xingyou,He Yuqin,et al. 2015.Comparative analysis of X-band phased array antenna weather radar measurements[J]. Plateau Meteor,34(4):1167-1176. DOI:10.7522/j. issn. 1000-0534.2014.00043.<br/>刘俊,黄兴友,何雨芩,等. 2015.X波段相控阵气象雷达回波数据的对比分析[J]. 高原气象,34(4):1167-1176,
[20]Liu Liping,Xie Lei,Cui Zhehu. 2014. Examination and application of doppler spectral density data in drop size distribution retrieval in weak precipitation by cloud radar[J]. Chinese J Atmos Sci,38(2):223-236.<br/>刘黎平,谢蕾,崔哲虎. 2014. 毫米波云雷达功率谱密度数据的检验和在弱降水滴谱反演中的应用研究[J]. 大气科学,38(2):223-236.
[21]Peng Liang,Chen Hongbin,Li Bai. 2012. A case study of deriving vertical air velocity from 3 mm cloud radar[J]. Chinese J Atmos Sci,36(1):1-10.<br/>彭亮,陈洪滨,李柏. 2012.3 mm多普勒云雷达测量反演云内空气垂直速度的研究[J]. 大气科学,36(1):1-10.
[22]Sheng Peixuan,Mao Jietai,Li Jianguo,et al. 2003. Atmospheric physics[M]. Beijing:China Meteorological Press,290-307.<br/>盛裴轩,毛节泰,李建国,等. 2003. 大气物理学[M]. 北京:北京大学出版社,290-307.
[23]Wang Sha,Ruan Zheng,Ge Runsheng. 2012. Simulation of return signal spectraum of wind profile radar[J]. J. Appl Meteor Sci,23(1):20-28.<br/>王莎,阮征,葛润生. 2012. 风廓线雷达探测大气返回信号谱的仿真模拟[J]. 应用气象学报,23(1):20-29.
[24]Wang Zhenhui,Ji Lei,Huang Xingyou,et al. 2011. Simulation study on the attenuation correction to reflectivityfactor observed with an air-borne W-band cloud radar[J]. Plateau Meteor,30(2):437-444.<br/>王振会,纪雷,黄兴友,等. 2011. 机载W波段测云雷达回波强度衰减订正仿真研究[J]. 高原气象,30(2):437-444.
[25]Wu Dui,He Yingchang,Chen Guiqiao. 1988. The microphysical features of warm clouds over the Xingfeng Jiang River valley in Guangdong during Apri to May[J]. J Trop Meteor,4(4):341-349.<br/>吴兑,何应昌,陈桂樵. 1988. 广东新丰江流域4-5月暖云的微物理特征[J]. 热带气象学报,4(4):341-349.
[26]Wu Juxiu,Wei Ming,Zhou Jie. 2014. Echo and capability analysis of 94 GHz cloud radars[J]. Acta Meteor Sinica,72(2):402-416.<br/>吴举秀,魏鸣,周杰. 2014.94 GHz云雷达回波及测云能力分析[J]. 气象学报,72(2):402-416.
[27]Wang Qingmei,Yang Bo,Wang Guorong. 2014. Analysis of the frontal characteristics of the backflow snowstorm process in Beijing area[J]. Plateau Meteor,33(2):539-547. DOI:10.7522/j. issn. 1000-0534.2014.00081.<br/>吴庆梅,杨波,王国荣. 2014. 北京地区一次回流暴雪过程的锋区特征分析[J]. 高原气象,33(2):539-547.
[28]Xu Xueyi,Zhao Zhendong,Liang Hongxin. 2014. Comparative analysis on doppler radar echo features of three non-supercell tornadic storms[J]. Plateau Meteor,33(4):1164-1172. DOI:10.7522/j. issn. 1000-0534.2013.00036.<br/>徐学义,赵振东,梁红新. 2014. 三次非超级单体龙卷风暴多普勒雷达特征对比分析[J]. 高原气象,33(4):1164-1172.
[29]Yin Jinfang. 2013.The study on observation and parameterization of cloud-precipitation microphysical properties over East Aisa[D]. Hangzhou:PHD Dissertation of Zhejiang University.<br/>尹金方. 2013. 东亚区域云和降水微物理特征及云微物理方案参数化方案构建[D]. 杭州:浙江大学博士学位论文.
[30]Zhang Peichang,Du Bingyu,Dai Tiepi. 2000. Radar Meteorology[M]. Beijing:China Meteorological Press,223-236.<br/>张培昌,杜秉玉,戴铁丕. 2000. 雷达气象学[M]. 北京:气象出版社,223-236.
[31]Zhang Yiping,Yu Xiaoding,Sun Jinglan,et al. 2014. Formation mechanism and analysis of radar observation of a heavy rainstorm accompanied by hail that back of trough[J]. Plateau Meteor,33(4):1093-1104. DOI:10.7522/j. issn. 1000-0534.2012.00200.<br/>张一平,俞小鼎,孙景兰,等. 2014. 一次槽后型大暴雨伴冰雹的形成机制和雷达观测分析[J]. 高原气象,33(4):1093-1104.
[32]Zhuang Wei,Liu Liping,Wang Gaili,et al. 2013. Radar-derived quantitative precipitation estimation in complex terrain area in Qinghai-Xizang Plateau[J]. Plateau Meteor,32(5):1224-1235. DOI:10.7522/j. issn. 1000-0534.2012.00118.<br/>庄薇,刘黎平,王改利,等. 2013. 青藏高原复杂地形区雷达估测降水方法研究[J]. 高原气象,32(5):1224-1235.
文章导航

/