论文

闪电VHF辐射源功率观测及雷暴电荷结构的初步分析

  • 刘妍秀 ,
  • 张广庶 ,
  • 王彦辉 ,
  • 李亚珺 ,
  • 武斌 ,
  • 张荣 ,
  • 余海
展开
  • 中国科学院寒区旱区环境与工程研究所寒旱区陆面过程与气候变化重点实验室, 兰州 730000;中国科学院大学资源与环境学院, 北京 100049

收稿日期: 2015-01-30

  网络出版日期: 2016-12-28

基金资助

国家自然科学基金项目(41375010,41305003,41075002);国家重点基础研究发展计划项目(2014CB441404)

Preliminary Analysisof the VHF Lightning Radiation Pulse Power and Charge Structure in a Thunderstorm

  • LIU Yanxiu ,
  • ZHANG Guangshu ,
  • WANG Yanhui ,
  • LI Yajun ,
  • WU Bin ,
  • ZHANG Rong ,
  • YU hai
Expand
  • Cold and Arid regions Environmental and Engineering research institute, Chinese Academy of Science, Lanzhou 730000, China;Institute of resources and environment, University of Chinese Academy of Science, Beijing 100049, China

Received date: 2015-01-30

  Online published: 2016-12-28

摘要

利用自行研制的闪电VHF辐射源功率接收系统,对青藏高原东北部闪电VHF辐射源功率三维分布进行了观测,初步分析了雷暴电荷结构,并利用自行研制的中心频率为270 MHz球载闪电模拟源,对闪电VHF辐射源功率接收系统进行了野外标定,得到了267~273 MHz频率范围的闪电辐射脉冲功率三维时空发展分布图。统计结果显示,在正云闪中,上部正电荷区平均辐射脉冲功率为4.8 W,下部负电荷区平均辐射脉冲功率为1.6 W,上部正电荷区的辐射功率明显高于下部负电荷区。在负云闪中,下部正电荷区平均辐射脉冲功率为3.2 W,上部负电荷区平均辐射脉冲功率为2.5 W,下部正电荷区的辐射功率明显高于上部负电荷区。在负地闪中,负电荷区平均值为3.0 W,正电荷区平均辐射脉冲功率为4.7 W。负电荷区辐射源数都少于正电荷区,绝大多数正电荷区的平均辐射脉冲功率大于负电荷区,但个别闪电的负电荷区平均辐射脉冲功率大于正电荷区。

本文引用格式

刘妍秀 , 张广庶 , 王彦辉 , 李亚珺 , 武斌 , 张荣 , 余海 . 闪电VHF辐射源功率观测及雷暴电荷结构的初步分析[J]. 高原气象, 2016 , 35(6) : 1662 -1670 . DOI: 10.7522/j.issn.1000-0534.2016.00051

Abstract

A balloon-borne Lightning Radiation Source Simulation Device (LRSSD for short, its center frequency is 270 MHz) has been developed. It was used to calibrate the pulse power received by lightning VHF radiation receiver in Pingliang, Gansu Province. The LRSSD connects two receiving systems. One is the calibration system standard that uses the logarithmic antenna and the Spectrum analyzer to receive the 267~273 MHz of the simulated lightning signal, thus measuring the VHF radiation lightning pulse power. The other is the dipole antenna that connects preamplifier, logarithmic amplifier, and the data receiving system, thus measuring the output voltage. A relationship between the measured voltage value and the standard received radiation pulse power was established by using the nonlinear least squares method and changing the distance between the input and output within the working scope of amplifier. Then the calculation formula of the pulse radiation power value of the lightning was obtained. 29 cases space-time distribution of lightning radiation pulse power were obtained. Statistical results indicate the positive intracloud flash, the average radiation pulse power is about 4.8 W and 1.6 W in the upper positive and lower negative charge region, respectively. The radiation power in the upper positively charge area is higher than that in the lower negatively charge area. The negative intracloud flash, the average radiation pulse power is about 3.2 W and 2.6 W in the lower positive and upper negative charge region, respectively. The radiation power in the lower positively charged area is higher than that in the upper negatively charged area. The negative ground flash, the average radiation pulse power is about 3.0 W and 4.7 W in the negative and positive charge region, respectively. The results indicate that the source points in the negative charge area are less than that in the positive charge area. Most average radiation pulse power in positive charge area is greater than in the negative charge area. For some individual lightning flashes, the situation is reversed.

参考文献

[1]Krehbiel P R, Thomas R J, Rison W, et al. 2000. GPS-based mapping system reveals lightning inside storms[J]. EOS, 81(3):21-32. DOI:10.1029/00EO00014.
[2]Krehbiel P R, Thomas R, Rison W, et al. 2000. Lightning mapping observations in central Oklahoma[J]. Eos, 81:21-25.
[3]Le Vine D M, Krider E P, Weidman C D. 1979. VHF Radiation Produced by Intracloud Lightning Discharges[J]. NASA Technical Paper, TP-1454. DOI:10.1029/JC084iC09p05760.
[4]Le Vine D M, Krider E P. 1977. The temporal structure of HF and VHF radiations during Florida lightning return strokes[J]. Geophys. Res. Lett, 4(1):13-16. DOI:10.1029/GL004i001p00013.
[5]Lhermitte R, Krehbiel P R. 1979. Doppler radar and electrical radiation observations of thunderstorms[J]. IEEE Transactions on Geoscience Electronics, GE-17(4). DOI:10.1109/TGE. 1979.294644.
[6]Proctor D E. 1971. A hyperbolic system for obtaining VHF radio pictures of lightning[J]. J Geophys Res, 76(6):1478-1489. DOI:10.1029/JC076i006p01478.
[7]Rison W, Thomas R J, Krehbiel P R, et al. 1999. A GPS-based three-dimensional lightning mapping system:initial observations in central New Mexico[J]. Geophys Res Lett, 26(23):3573-3576. DOI:10.1029/1999GL010856.
[8]Shao X M, Rhodes C T, Holden D N. 1999. RF radiation observations of positive cloud-to-ground flashes[J]. J Geophys Res, 104(D8):9601-9608. DOI:10.1029/1999JD900036.
[9]Taylor W L. 1978. A VHF technique for space-time mapping of lightning discharge processes[J]. J Geophys Res, 83(7):3575-3583. DOI:10.1029/JC083iC07.03575.
[10]Thomas R J, Krehbiel P R, Rison W, et al. 2001. Observations of VHF source powers radiated by lightning[J]. Geophys Res Lett, 28(1):143-146. DOI:10.1029/2000GL011464.
[11]Thomas R J, Krehbiel P R, Rison W, et al. 2004. Accuracy of the Lightning Mapping Array[J]. J Geophys Res, 109(D14207). DOI:10.1029/2004JD004549.
[12]Warwick J W, Hayenga C O, Brosnahan J W. 1979. Interferometric directions of lightning sources at 34 MHz[J]. J Geophys Res, 84:2457-2468. DOI:10.1029/JC084iC05p02457.
[13]Cao Dong jie, Zhang Guangshu, Zhang Tong, et al. 2008. Analyses on VHF Radiation of Cloud-to-Ground Flashes in Pingliang Loess Plateau[J]. Plateau Meteor, 27(2):365-372.<br/>曹冬杰, 张广庶, 张彤, 等. 2008. 平凉黄土高原地闪VHF辐射特征分析[J]. 高原气象, 27(2):365-372.
[14]Li YaJun, Zhang GuangShu, WenJun, et al. 2012. Spatial and temporal evolution of a multi-cell thunderstorm charge structure in coastal areas[J]. J Geophys, 55:3203-3212. DOI:10.6038/j. issn. 0001-5733.2012.10.003.<br/>李亚珺, 张广庶, 文军, 等. 2012. 沿海地区一次多单体雷暴电荷结构时空演变[J], 地球物理学报, 55:3203-3212.DOI:10.6038/j. issn. 0001-5733.2012.10.003.
[15]Liu Xinsheng, Guo Changming. 1987. The surface electrostatic field-change produced by lightning flashes and the lower positive charge layer of the thunderstorm[J]. Plateau Meteor, 45(4):500-504. DOI:10.11676/qxxb1987.064.<br/>刘欣生, 郭昌明, 王才伟. 1987. 闪电引起的地面电场变化特征及雷暴云下部的正电荷层[J]. 高原气象, 45(4):500-504.DOI:10.11676/qxxb1987.064.
[16]Qie Xiushu, Liu Xinsheng, Wang Huaibin. 1990. Lightning radiation at 20 MHz and discharge process[J]. Plateau Meteor, 9(1):93-97.<br/>郄秀书, 刘欣生, 王怀斌. 1990. 闪电的20MHz辐射与放电过程[J]. 高原气象, 9(1):93-97.
[17]Qie Xiushu, Guo Changming, Zhang Guangshu. 1988. The measurements of amplitude spectral distribution of lightning radiation field and the estimation of first return stroke parameters[J]. Plateau Meteor, 7(4):312-320.<br/>郄秀书, 郭昌明, 张广庶. 1988. 闪电辐射场的宽带频谱测量及地闪首次回击放电参数的估算[J]. 高原气象, 7(4):312-320.
[18]Shao Xuanmin, Liu Xinsheng. 1987. A preliminary analysis of intracloud lightning flashes and lower positive charge of tthunderclouds[J]. Plateau Meteor, 6(4):317-325.<br/>邵选明, 刘欣生. 1987. 云中闪电及云下部正电荷的初步分析[J]. 高原气象, 6(4):317-325.
[19]Wang Caiwei, Chen Qian, Liu Xinsheng, et al. 1987. The electric field produced by the lower positive charge center of thundercloud[J]. Plateau Meteor, 6(1):65-74.<br/>王才伟, 陈茜, 刘欣生, 等. 1987. 雷雨云下部正电荷中心产生的电场[J]. 高原气象, 6(1):66-74.
[20]Wu Bin, Zhang Guangshu, Wang Yanhui, et al. 2013. Comparative analysis of VHF radiation and optical channel of the negative cloud-to-ground lightning flash with two striking point[J]. Plateau Meteor, 32(2):519-529. DOI:10.7522/j. issn. 1000-0534.2012.00049.<br/>武斌, 张广庶, 王彦辉, 等. 2013. 双接地负地闪VHF辐射源放电通道和光学通道的对比分析[J]. 高原气象, 32(2):519-529.
[21]Zhang Guangshu, Wang Yanhui, Qie Xiushu, et al. 2010. Using lightning locating system based on time-of-arrival technique to study Three-Dimensional lightning discharge processes[J]. Sci China Earth Sci, 40(4):523-534. DOI:10.1007/s11430-009-0116-x.<br/>张广庶, 王彦辉, 郄秀书, 等. 2010. 基于时差法三维定位系统对闪电放电过程的观测研究[J]. 中国科学(D辑), 40(4):523-534.
[22]Zhang Guangshu, Li Yajun, Wang Yanhui, et al. 2015. Experimental study on location accuracy of a 3D VHF lightning-radiation-source locating network[J]. Sci China Earth Sci, 58(11):2034-2048. DOI:10.1007/s11430-015-5119-1.<br/>张广庶, 李亚珺, 王彦辉, 等. 2015. 闪电VHF辐射源三维定位网络测量精度的实验研究[J]. 中国科学, 58(11):2034-2048.
[23]Zhang Guangshu, Qie Xiushu, Wang Huaibin, et al. 2003. Fast recording system on multi-parameter of lightning flash with sub-microsecond resolution[J]. Plateau Meteor, 22(3):301-305. DOI:10.3321/j. issn:1000-0534.2003.03.015.<br/>张广庶, 郄秀书, 王怀斌, 等. 2003. 闪电多参量同步高速即时记录系统[J]. 高原气象, 22(3):301-305.
[24]Zhang Guang shu, Zhao Yu Xiang, Qie Xiu shu, et al. 2008. Observation and research on the whole process of ground lightning using a radio narrowband interferometer[J]. Sci China Earth Sci, 38(9):1167-1180.<br/>张广庶, 赵玉祥, 郄秀书, 等. 2008. 利用无线电窄带干涉仪定位系统对地闪全过程的观测与研究[J]. 中国科学(D辑), 38(9):1167-1180.
[25]Zhang Yijun, Ge Zhengmo, Chen Chengpin, et al. 1998. Electrical characteristics of atmosphere in east area of Qinghai-Xizang Plateau[J]. Plateau Meteor, 17(2):135-141.<br/>张义军, 葛正谟, 陈成品, 等. 1998. 青藏高原东部地区的大气电特征[J]. 高原气象, 17(2):135-141.
[26]Zhang Yijun, Liu Xinsheng, Xiao Qingfu, et al. 1997. A analysis of characteristics of thunderstorm and artificially triggered lightning in the North and South of China[J]. Plateau Meteor, 16(2):113-121.<br/>张义军, 刘欣生, 肖庆复, 等. 1997. 中国南北雷暴人工触发闪电特性对比分析[J]. 高原气象, 16(2):113-121.
[27]Zhang Yi jun, Paul R. Krehbiel, Liu Xinsheng, et al. 2003. Three Dimensions structure of lightning discharge channel[J]. Plateau Meteor, 22(3):217-220. DOI:10.3321/j. issn:1000-0534.2003.03.002.<br/>张义军, Krehbiel P R, 刘欣生, 等. 2003. 闪电放电通道的三维结构特征[J]. 高原气象, 22(3):217-220.
文章导航

/