论文

陆面模式CLM4.5对青藏高原高寒草甸地表能量交换模拟性能的评估

  • 谢志鹏 ,
  • 胡泽勇 ,
  • 刘火霖 ,
  • 孙根厚 ,
  • 杨耀先 ,
  • 蔺筠 ,
  • 黄芳芳
展开
  • 中国科学院西北生态环境资源研究院 寒区旱区陆面过程与气候变化重点实验室, 兰州 730000;中国科学院青藏高原地球科学卓越创新中心, 北京 100101;泉州市气象局, 福建 362000;中国科学院大气物理研究所, 北京 100029;中国科学院大学, 北京 100049

收稿日期: 2015-09-11

  网络出版日期: 2017-02-28

基金资助

国家自然科学基金项目(91337212,91537101,41661144043,91637313);公益性行业(气象)科研专项(GYHY201406001)

Evaluation of the Surface Energy Exchange Simulations of Land Surface Model CLM4.5 in Alpine Meadow over the Qinghai-Xizang Plateau

  • XIE Zhipeng ,
  • HU Zeyong ,
  • LIU Huolin ,
  • SUN Genhou ,
  • YANG Yaoxian ,
  • LIN Yun ,
  • HUANG Fangfang
Expand
  • Key Laboratory for Land Process and Climate Change in Cold Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;Chinese Academy of Sciences Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China;Quanzhou Meteorological Bureau, Quanzhou 362000, China;Institute of Atmosphere and Physics, Chinese Academy of Sciences, Beijing 100029, China;University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2015-09-11

  Online published: 2017-02-28

摘要

利用中国科学院那曲高寒气候环境观测研究站2013年9月1日至2014年8月31日一个完整年的观测资料,对陆面过程模式CLM4.5在青藏高原(下称高原)高寒草甸下垫面地表能量交换的模拟性能进行了评估。模拟结果表明,CLM4.5能够较好的模拟高原春季、夏季和秋季非冻结期地面长波、反射辐射和地表净辐射、感热和潜热通量以及地表土壤热通量等的季节变化和日循环特征。但对冬季冻结期地表温度的模拟偏低,导致模拟与观测的感热反相,对地面反射辐射模拟偏大。截断冬季降水的敏感性试验进一步指出,模式冬季反射辐射偏大主要是由于积雪引起的地表反照率偏高造成,进而造成地表温度以及感热通量的模拟偏低。因此,高原积雪参数化方案以及与积雪相关的反照率参数化方案还需进一步改进和完善。

本文引用格式

谢志鹏 , 胡泽勇 , 刘火霖 , 孙根厚 , 杨耀先 , 蔺筠 , 黄芳芳 . 陆面模式CLM4.5对青藏高原高寒草甸地表能量交换模拟性能的评估[J]. 高原气象, 2017 , 36(1) : 1 -12 . DOI: 10.7522/j.issn.1000-0534.2016.00012

Abstract

Driven by a full year observations from 1 September 2013 to 31 August 2014 of Nagqu Climatic and Environmental observation station in the Qinghai-Xizang Plateau, the land surface model CLM4.5 is used to evaluate its performance in simulating the surface energy exchange in the alpine meadow over the Qinghai-Xizang Plateau.Results indicate that CLM4.5 can reproduce the characteristics of seasonal variation and diurnal cycle of the surface longwave radiation, reflected radiation, net radiation, sensible latent heat flux and soil heat flux in spring, summer and fall when the soil does not freeze completely.However, the model underestimates the surface temperature in winter, which leads the reverse of sensible heat flux between simulations and observations during this period, while overestimates the reflected radiation.Results from the sensitive test further demonstrate that the overestimation of surface albedo can lead to the overestimation of reflected radiation in winter, causing the underestimation of surface temperature and the sensible heat flux.Consequently, the parameterization schemes of snow processes and surface albedos in CLM4.5 need to be further improved.

参考文献

[1]Betts R A, Falloon P D, Goldewijk K K, et al.2007.Biogeophysical effects of land use on climate:Model simulations of radiative forcing and large-scale temperature change[J].Agricultural & Forest Meteorology, 2007, 142(2-4):216-233.
[2]Bonan G B, Lawrence P J, Oleson K W, et al.2011Improving canopy processes in the Community Land Model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data[J].J Geophy Research, 116(G2):G02014.DOI:10.1029/2010jg001593.
[3]Dickinson R E, Henderson-Sellers A, Rosenzweig C, et al.1991.Evapotranspiration models with canopy resistance for use in climate models, a review[J].Agri Forest Meteor, 54(2-4):373-388.
[4]Gao R, Dong W, Wei Z.2008.Simulation and analysis of China climate using two-way interactive atmosphere-vegetation model (RIEMS-AVIM)[J].Adv Atmos Sci, 25(6):1085-1097.DOI:10.1007/s00376-008-1085-2.
[5]Gao Z, Chae N, Kim J, et al.2004.Modeling of surface energy partitioning, surface temperature, and soil wetness in the Tibetan prairie using the Simple Biosphere Model 2 (SiB2)[J].Journal of Geophysical Research:Atmospheres, 109(D6):D06102.DOI:10.1029/2003JD004089.
[6]Kleidon A, FraedrichK, Heimann M.2000.A green planet versus a desert world:Estimating the maximum effect of vegetation on the land surface climate[J].Climatic Change, 44(4):471-493.
[7]Steiner A L, Pal J S, Giorgi F, et al.2005.The coupling of the Common Land Model (CLM0) to a regional climate model (RegCM)[J].Theor Appl Climatol, 82(3-4):225-243.DOI:10.1007/s00704-005-0132-5.
[8]Subin Z M, Riley W J, Mironov D.2012.An improved lake model for climate simulations:Model structure, evaluation, and sensitivity analyses in CESM1[J].Journal of Advances in Modeling Earth Systems, 4(1):M02001.DOI:10.1029/2011MS000072.
[9]Swenson S C, Lawrence D M.2012.A new fractional snow-covered area parameterization for the Community Land Model and its effect on the surface energy balance[J].Journal of Geophysical Research:Atmospheres, 117(D21):D21107.DOI:10.1029/2012jd018178.
[10]Swenson S C, LawrenceD M, Lee H.2012.Improved simulation of the terrestrial hydrological cycle in permafrost regions by the Community Land Model[J].Journal of Advances in Modeling Earth Systems, 4(3):M08002.DOI:10.1029/2012MS000165.
[11]Wu G, Duan A, Liu Y, et al.2015.Tibetan Plateau climate dynamics:recent research progress and outlook[J].National Sci Rev, 2(1):100-116.DOI:10.1093/nsr/nwu045.
[12]Wu G, Liu Y, He B, et al.1996.Thermal controls on the Asian summer monsoon[J].Sci Reps, 2:404.
[13]Xie P, Arkin P A.1996.Analyses of global monthly precipitation using gauge observations, satellite estimates, and numerical model predictions[J].J Climate, 9(4):840-858.DOI:10.1175/1520-0442(1996)009 < 0840:AOGMPU > 2.0.CO; 2.
[14]Yanai M, LiC, Song Z.1992.Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon[J].J Meteor Soc Japan, 70(1B):319-351.
[15]Yang K, ChenY Y, Qin J.2009.Some practical notes on the land surface modeling in the Tibetan Plateau[J].Hydro Earth Sys Sci, 13(5):687-701.
[16]Chen Boli, Luo Siqiong, Lü Shihua, et al.2014.Validation and comparison of the simulation at Zoigê station during freezing and thawing with land surface model CLM[J].Climatic and Environmental Research, 19(5):649-658.DOI:10.3878/j.issn.1006-9585.2014.13013.<br/>陈渤黎, 罗斯琼, 吕世华, 等.2014.陆面模式CLM对若尔盖站冻融期模拟性能的检验与对比[J].气候与环境研究, 19(5):649-658.
[17]Chen Haishan, Sun Zhaobo.2005.Design of a Comprehensive Land Surface Model and Its Validation Part Ⅱ.Model Validation[J].Chinese Journal of Atmospheric Sciences, 29(2):272-282.<br/>陈海山, 孙照渤.2005.陆面模式CLSM的设计及性能检验Ⅱ.模式检验[J].大气科学, 29(2):272-282.
[18]Feng Jianwu, Liu Huizhi, Wang Lei, et al.2012.Seasonal and inter-annual variation of surface roughness length and bulk transfer coefficients in a semiarid area[J].Sci China Earth Sci, 42(1):24-33.DOI:10.1007/s11430-011-4258-2.<br/>冯健武, 刘辉志, 王雷, 等.2012.半干旱区不同下垫面地表粗糙度和湍流通量整体输送系数变化特征[J].Scientia Sinica Terrae, 42(1):24-33.
[19]Hu Heping, Ye Baisheng, Zhou Yuhua, et al.2006.A land surface model incorporated with soil freeze/thaw and its application in GAME/Tibet[J].Science in China Ser.D Earth Sciences, 26(08):755-766.<br/>胡和平, 叶柏生, 周余华, 等.2006.考虑冻土的陆面过程模型及其在青藏高原GAME/Tibet试验中的应用[J].中国科学.D辑, 26(08):755-766.
[20]Huang Wei, Guo Zhenhai, Yu Rucong.2004.Numerical simulation of clm over huaihe basin[J].Acta Meteor Sinica, 62(6):764-755.<br/>黄伟, 郭振海, 宇如聪.2004.CLM在淮河流域数值模拟试验[J].气象学报, 62(06):764-775.
[21]Ji Guoliang, Shi Xinghe, Gao Wuxiang.2001.The variation of surface heating field over Northern Qinghai-Tibet Plateau and its effect on climate[J].Plateau Meteor, 20(03):239-244.<br/>季国良, 时兴和, 高务祥.2001.藏北高原地面加热场的变化及其对气候的影响[J].高原气象, 20(03):239-244.
[22]Lai Xin, Wen Jun, Cen Sixian, et al.2014.Numerical simulation evaluation study of soil moisture over China by using CLM4.0 model[J].Chinese J Atmos Sci, 38(03):499-512.DOI:10.3878/j.issn.1006-9895.1401.13194.<br/>赖欣, 文军, 岑思弦, 等.2014.CLM4.0模式对中国区域土壤湿度的数值模拟及评估研究[J].大气科学, 38(03):499-512.
[23]Liu Huolin, Hu Zeyong, Yang Yaoxian, et al.2015.Simulation of the freezing-thawing processes at Nagqu Area over Qinghai-Xizang Plateau[J].Plateau Meteor, 34(3):676-683.DOI:10.7522/j.issn.1000-0534.2015.00021.<br/>刘火霖, 胡泽勇, 杨耀先, 等.2015.青藏高原那曲地区冻融过程的数值模拟研究[J].高原气象, 34(3):676-683.
[24]Liu Shaofeng, Lin Zhaohui.2005.Validation of common land model using field experiment data over typical land cover types in East Asia[J].Climatic Environ Res, 10(3):406-421.<br/>刘少锋, 林朝晖.2005.通用陆面模式CLM在东亚不同典型下垫面的验证试验[J].气候与环境研究, 10(3):406-421.
[25]Liu Xin, Li Weiping, Wu Guoxiong.2002.Interannual variation of the diabatic heating over the Tibetan Platean and the northern hemispheric circulation in summer[J].Acta Meteor Sinica, 60(3):267-277.<br/>刘新, 李伟平, 吴国雄.2002.夏季青藏高原加热和北半球环流年际变化的相关分析[J].气象学报, 60(3):267-277.
[26]Luo Lihui, Zhang Yaonan, Zhou Jian, et al.2013.Simulation and application of the land surface model CLM driven by WRF in the Tibetan Plateau[J].J Glaci Geocry, 35(3):553-564.DOI:10.7522/j.issn.1000-0240.2013.0064.<br/>罗立辉, 张耀南, 周剑, 等.2013.基于WRF驱动的CLM模型对青藏高原地区陆面过程模拟研究[J].冰川冻土, 35(3):553-564.
[27]Luo Siqiong, Lü Shihua, Zhang Yu, et al.2008.Simulation analysis on land surface process of BJ site of Central Tibetan Plateau using CoLM[J].Plateau Meteor, 27(2):259-271.<br/>罗斯琼, 吕世华, 张宇, 等.2008.CoLM模式对青藏高原中部BJ站陆面过程的数值模拟[J].高原气象, 27(2):259-271.
[28]Pan Baolin.2012.Late pleistocence high lake levels of Donghu Lake and their opticall stimulated luminescence dating[D].Beijing:Graduate University of Chinese Academy of Sciences, 1-104.<br/>潘宝林. 2012. 晚更新世以来羌塘高原中部东湖水位变化与光释光年代研究[D]. 北京: 中国科学院研究生院, 1-104.
[29]Song Yaoming, Fan Yi, Ma Tianjiao.2014.Evaluation of simulation performance of land surface model NCAR_CLM4.5 at a degrated glassland station in semi-arid area[J].Trans Atmos Sci, 37(6):794-803.DOI:10.13878/j.cnki.dqkxxb.20140105001.<br/>宋耀明, 范轶, 马天娇.2014.陆面过程模式CLM4.5在半干旱区退化草原站的模拟性能评估[J].大气科学学报, 37(6):794-803.
[30]Wang Wei, Zhang Ying.2010.Advances in research on land surface processes model[J].Meteor Disaster Reduction Res, 33(3):1-6.<br/>汪薇, 张瑛.2010.陆面过程模式的研究进展简介[J].气象与减灾研究, 33(3):1-6.
[31]Wang Yu, Hu Zeyong, Xun Xueyi, et al.2013.Optimization and test of soil thermal conductivity parameterization schemes in Northern Qinghai-Xizang Plateau[J].Plateau Meteor, 32(3):646-653.DOI:10.7522/j.issn.1000-0534.2013.00063.<br/>王愚, 胡泽勇, 荀学义, 等.2013.藏北高原土壤热传导率参数化方案的优化和检验[J].高原气象, 32(3):646-653.
[32]Wu Guoxiong, Zhang Yongsheng.1999.Thermal and mechanical forcing of the Tibetan Plateau and Asian monsoon onset.Part Ⅱ:Timing of the onset[J].Chinese J Atmos Sci, 23(1):52-62.<br/>吴国雄, 张永生.1999.青藏高原的热力和机械强迫作用以及亚洲季风的爆发Ⅱ.爆发时间[J].大气科学, 23(1):52-62.
[33]Wu Guoxiong, Zhang Yongsheng.1998.Thermal and mechanical forcing of the Tibetan Plateau and Asian Monsoon Onset.Ⅰ:Situating of the onset[J].Chinese J Atmos Sci, 22(6):22-35.<br/>吴国雄, 张永生.1998.青藏高原的热力和机械强迫作用以及亚洲季风的爆发Ⅰ.爆发地点[J].大气科学, 22(6):22-35.
[34]Xiong Jiansheng, Zhang Yu, Wang Shaoying, et al.2014.Influence of soil moisture transmission scheme improvement in CLM4.0 on simulation of land surface process in Qinghai-Xizang Plateau[J].Plateau Meteor, 33(2):323-336.DOI:10.7522/j.issn.1000-0534.2014.00012.<br/>熊建胜, 张宇, 王少影, 等.2014.CLM4.0土壤水分传输方案改进在青藏高原陆面过程模拟中的效应[J].高原气象, 33(2):323-336.
[35]Yang Yaoxian, Li Maoshan, Hu Zeyong, et al.2014.Influence of surface roughness on surface-air fluxes in alpine meadow over the Northern Qinghai-Xizang Plateau[J].Plateau Meteor, 33(3):626-636.DOI:10.7522/j.issn.1000-0534.2013.00199.<br/>杨耀先, 李茂善, 胡泽勇, 等.2014.藏北高原高寒草甸地表粗糙度对地气通量的影响[J].高原气象, 33(3):626-636.
[36]Yue Ping, Zhang Qiang, Li Yao-Hui, et al.2013.Bulk transfer coefficients of momentum and sensible heat over semiarid grassland surface and their parameterization scheme[J].Acta Phys Sinica, 62(9):527-535.<br/>岳平, 张强, 李耀辉, 等.2013.半干旱草原下垫面动量和感热总体输送系数参数化关系研究[J].物理学报, 62(9):527-535.
[37]Zeng Jian.2011.The characteristic and parameterization of land surface processes and its relationship with climate over Northern China[D].Beijing:Chinese Academy of Meteorological Sciences, 1-101.<br/>曾剑. 2011. 中国北方地区陆面过程特征和参数化及其与气候关系[D]. 北京: 中国气象科学研究院, 1-101.
[38]Zhuang Jinxin, Wang Weizhen, Wang Jieming.2013.Flux calculation of eddy-covariance method and comparison of three main softwares[J].Plateau Meteor, 32(1):78-87.DOI:10.7522/j.issn.1000-0534.2012.00009.<br/>庄金鑫, 王维真, 王介民.2013.涡动相关通量计算及三种主要软件的比较分析[J].高原气象, 32(1):78-87.
文章导航

/