论文

黄河中游一次大暴雨的观测分析与数值模拟

  • 赵桂香 ,
  • 薄燕青 ,
  • 邱贵强 ,
  • 朱煜
展开
  • 山西省气象台, 太原 030006;山西省气象信息中心, 太原 030006

收稿日期: 2015-06-16

  网络出版日期: 2017-04-28

基金资助

国家自然科学基金项目(41475050)

Observation Analysis and Numerical Simulation about a Heavy Rain in the Middle of Yellow River

  • ZHAO Guixiang ,
  • BO Yanqing ,
  • QIU Guiqiang ,
  • ZHU Yu
Expand
  • Shanxi Meteorological Observatory, Taiyuan 030006, China;Shanxi Meteorological Information Center, Taiyuan 030006, China

Received date: 2015-06-16

  Online published: 2017-04-28

摘要

利用常规观测资料、FY-2E TBB资料、地面加密自动气象站资料等,对2013年7月9日黄河中游地区(山西)暴雨过程进行了观测分析,利用WRF中尺度模式输出结果分析了低层切变线及其附近中尺度扰动的演变特征、动热力结构及水汽特征,以及低层偏东北气流的性质和作用等。结果表明:暴雨大暴雨是由700 hPa切变线附近激发的4个中尺度对流云团直接造成的;低层稳定的切变线附近形成的中尺度扰动低涡,与地面中尺度露点锋和中尺度辐合线共同作用,触发了中尺度对流云团的发生、发展。受来自低层西路和东北路两支冷空气夹挤,暴雨区暖湿空气沿东南西北向被迫抬升,形成一个狭窄的沿西路冷空气爬升的倾斜上升气流区,在其两侧形成两个方向相反的次级环流圈。水汽辐合中心在边界层附近,但这不是造成暴雨大暴雨的主要原因。低层辐合上升运动持续增强,偏南风入流将水汽向暴雨区集中,而次级环流的上升支将水汽向高层输送,使得暴雨区上空局地整层可降水量持续增加,以及对流不稳定和对称不稳定共存,加强了涡层不稳定,水汽在强不稳定的环境中沿倾斜上升气流抬升凝结,并高效率下降,可能是此次暴雨大暴雨的重要原因。低层偏东北气流为干冷与暖湿的一个倾斜交界面,该面上各种气象要素并不均匀,但在其中心区域低层为温度的零平流区,以及垂直速度、涡度和散度等物理量的零线区;围绕该支气流形成一个反气旋式的次级环流圈;该支气流两侧均存在较大垂直风切变,随着该支气流的南压和向河套地区的深入,低层暖湿气流的上升辐合作用不断加强,下沉支也逐渐活跃,是中尺度对流系统发生发展的重要触发机制之一。

本文引用格式

赵桂香 , 薄燕青 , 邱贵强 , 朱煜 . 黄河中游一次大暴雨的观测分析与数值模拟[J]. 高原气象, 2017 , 36(2) : 436 -454 . DOI: 10.7522/j.issn.1000-0534.2016.00093

Abstract

A heavy rain in the middle of Yellow River (Shanxi) on 9 July 2013 was analyzed through conventional observation data, FY-2E TBB, and ground encryption automatic weather station data. Evolution characteristics of shear line at low and near Mesoscale turbulence, dynamic and thermal structure characteristics, water characteristics, and nature and function of partial northeast air flow were analyzed by using output data of the high-resolution Weather Research and Forecasting (WRF) model. The results show that the heavy rain was directly caused by four Mesoscale convective cloud clusters aroused near shear line at 700 hPa. The occurrence and development of the Mesoscale convective cloud clusters were together triggered by the turbulent vortex formed near shear line at low, the ground Mesoscale dew front, and the ground Mesoscale convective line. The warm air overhead heavy rain area were forced uplift along northwest to southeast, so that form an inclined upward flow area along west cold air climbing affected by pinch of west and northeast cold air coming from low level. Two secondary circulations in the opposite direction were formed in two sides of inclined upward flow area. The convergence center of water was located near boundary layer. But it was not main reason causing heavy rain. The important reason of causing this heavy rain were that convergence ascending motion at low level was continued strength, water was collected to the heavy rain area by inflow of southerly winds, water was transported to high lever by ascending flow so causing the whole layer water of continued increasing over heavy rain area, and instability of vortex layer was strengthened due to symmetrical and convective instability were coexist. And under the background of strong instability, water was lifted along inclined upward flow, condensed, and falling by high efficiency way. The northeast airflow at low level was an interface of dry and cold air and warm. Various meteorological elements were uniform distribution on the interface. But in the center of the interface, it was a zero area of advection, vertical velocity, vorticity, and divergence at low level. There formed an anti-cyclonic secondary circulation around the northeast flow. There had a great vertical wind shear in two sides of the northeast flow. With it goes deep into Hetao area and Shanxi province, convergence of ascending flow at low level was continually strengthened. At the same time, subsidence became active. It was one of important triggering mechanism.

参考文献

[1]Lagouvardos K, Kotroni V.1995.Upper-lever frontogenesis: Two case studies from the FRONTS 87 Experiment[J].Mon Wea, 123(4): 1197-1206.
[2]Martin J E.1998.The structure and evolution of a continental winter cyclone.PartⅡ: Frontal forcing of an extreme snow event[J].Mon Wea Rev, 126(2): 329-348.
[3]常煜, 李秀娟, 陈超, 等.2016.内蒙古一次暴雨过程中尺度特征及成因分析[J].高原气象, 35(2): 432-443.
[4]Chang Yu, Li Xiujuan, Chen Chao, et al.2016.Mesoscale characteristics of a rainstorm process in Inner Mongolia and its cause analysis[J].Plateau Meteor, 35(2): 432-443.DOI: 10.7522/j.issn.1000-0534.2014.00155.
[5]陈力强, 陈受钧.2005.东北冷涡诱发的一次MCS结构特征数值模拟[J].气象学报, 63(2): 173-183.
[6]Chen Liqiang, Chen Shoujun.2005.A numerical study of the MCS in a cold vertex over Northeastern China[J].Acta Meteor Sinica, 63(2): 173-183.
[7]杜小玲, 杨静, 彭芳, 等.2013.贵州望谟初夏暴雨环境场和物理量场合成分析[J].高原气象, 32(5): 1400-1413.
[8]Du Xiaoling, Yang Jing, Peng Fang, et al.2013.Synthetic analyses on environmental and physical field of rainstorm in early summer in Wangmo Guizhou[J].Plateau Meteor, 32(5): 1400-1413.DOI: 10.7522/j.issn.1000-0534.2012.00131.
[9]费建芳, 伍荣生, 宋金杰, 等.2009.对称不稳定理论的天气分析与预报应用研究进展[J].南京大学学报 (自然科学版), 45(3): 323-333.
[10]Fei Jianfang, Wu Rongsheng, Song Jinjie, et al.2009.Advances in synoptic analysis and application of symmetric instability theory[J].Journal of Nanjing University (Natural Sciences), 45(3): 323-333.
[11]高守亭, 孙建华, 崔晓鹏.2008.暴雨中尺度系统数值模拟与诊断研究[J].大气科学, 32(4): 854-866.
[12]Gao Shouting, Sun Jianhua, Cui Xiaopeng.2008.Numerical simulation and dynamic analysis of mesoscale torrential rain systems[J].Chinese J Atmos Sci, 32(4): 854-866.
[13]高守亭, 周玉淑.2001.水平切变线上涡层不稳定理论[J].气象学报, 59(4): 393-404.
[14]Gao Shouting, Zhou Yushu.2001.The instability of the vertex sheet along the horizontal shear line[J].Acta Meteor Sinica, 59(4): 393-404.
[15]井喜, 李社宏, 屠妮妮, 等.2011.黄河中下游一次MCC和<i>β</i>中尺度强对流云团相互作用暴雨过程综合分析[J].高原气象, 30(4): 913-928.
[16]Jing Xi, Li Shehong, Tu Nini, et al.2011.Synthetic diagnostic analysis on a rainstorm process caused interaction of MCC and meso-<i>β</i> scale severe convective cell in mid-and lower-reacher of Yellow River[J].Plateau Meteor, 30(4): 913-928.
[17]井喜, 屠妮妮, 井宇, 等.2013.中国MCC时空分布与天气学特征分析[J].高原气象, 32(6): 1597-1607.
[18]Jing Xi, Tu Nini, Jing Yu, et al.2013.Analysis on temporal-spatial distributions and synoptic characteristics of MCC in China[J].Plateau Meteor, 32(6): 1597-1607.DOI: 10.7522/j.issn.1000-0534.2012.00141.
[19]井宇, 井喜, 屠妮妮, 等.2010.黄土高原低值对流有效位能区中<i>β</i>尺度大暴雨综合分析[J].高原气象, 29(1): 78-89.
[20]Jing Yu, Jing Xi, Tu Nini, et al.2010.Comprehensive analysis for meso-<i>β</i>-scale heavy rainstorm occurred in the area of low convective available potential energy on Loess Plateau[J].Plateau Meteor, 29(1): 78-89.
[21]黎慧金, 李向红, 黄芳, 等.2013.广西一次特大暴雨MCC演变过程及结构特征分析[J].高原气象, 32(3): 806-817.
[22]Li Huijin, Li Xianghong, Huang Fang, et al.2013.Analysis on triggered MCC evolution process and structural characteristic in a heavy rainstorm in Guangxi[J].Plateau Meteor, 32(3): 806-817.DOI: 10.7522/j.issn.1000-0534.2012.00074.
[23]梁军, 张胜军, 石小龙, 等.2012.2010年8月8-10日辽东半岛暴雨过程的中尺度特征分析[J].高原气象, 31(5): 1320-1331.
[24]Liang Jun, Zhang Shengjun, Shi Xiaolong, et al.2012.Analyses on mesoscale characteristics associated with rainstorm in Liaodong Peninsula from 8 to 10 August 2010[J].Plateau Meteor, 31(5): 1320-1331.
[25]刘燕飞, 隆霄, 王晖.2015.陕西中西部地区一次暴雨过程的数值模拟研究[J].高原气象, 34(2): 378-388.
[26]Liu Yanfei, Long Xiao, Wang Hui.2015.Numerical simulation studies on a rainstorm in central western Shanxi province[J].Plateau Meteor, 34(2): 378-388.DOI: 10.7522/j.issn.1000-0534.2013.00182.
[27]隆霄, 程麒生, 文莉娟.2006."02·6"梅雨期一次暴雨<i>β</i>中尺度系统结构和演化的数值模拟研究[J].大气科学, 30(2): 327-340.
[28]Long Xiao, Cheng Linsheng, Wen Lijuan.2006.A numerical study of the structure and evolution of meso-<i>β</i> scale systemduring "02·6" Meiyu[J].Chinese Journal of Atmosphere Sciences, 30(2): 327-340.
[29]吕胜辉, 高艳红, 刘伟.2005.华北平原一次中尺度对流系统分析[J].高原气象, 24(2): 269-274.
[30]Lv Shenghui, Gao Yanhong, Liu Wei.2005.Analysis on a mesoscale convective system in North China plain[J].Plateau Meteor, 24(2): 269-274.
[31]慕建利, 李泽椿, 谌芸, 等.2014.一次陕西关中强暴雨中尺度系统特征分析[J].高原气象, 33(1): 148-161.
[32]Mu Jianli, Li Zechun, Chen Yun, et al.2014.Feature analyses of mesoscale convective system of a heavy rainfall in the central Shanxi Plain[J].Plateau Meteor, 33 (1): 148-161.DOI: 10.7522/j.issn.1000-0534.2013.00049.
[33]潘玉洁, 赵坤, 潘益农, 等.2012.用双多普勒雷达分析华南一次飑线系统的中尺度结构特征[J].气象学报, 70(4): 736-751.
[34]Pan Yujie, Zhao kun, Pan Yinong, et al.2012.Dual-doppler analysis of a squall line in southern China[J].Acta Meteor Sinica, 70(4): 736-751.
[35]齐琳琳, 赵思雄.2004.一次热带低压引发上海特大暴雨过程中尺度系统分析[J].大气科学, 28(2): 254-268.
[36]Qi Linlin, Zhao Sixiong.2004.An analysis of mesoscale features of heavy rainfall in Shanghai on 5-6 August 2001[J].Chinese Journal of Atmosphere Sciences, 28(2): 254-268.
[37]冉令坤, 齐彦斌, 郝寿昌.2014."7·21"暴雨过程动力因子分析和预报研究[J].大气科学, 38(1): 83-100.
[38]Ran Linkun, Qi Yanbin, Hao Shouchang.2014.Analysis and forecasting of heavy rainfall case on 21 July 2012 with dynamic parameters[J].Chinese J Atmos Sci, 38(1): 83-100.
[39]盛日锋, 王俊, 龚佃利, 等.2011.济南"7·18"大暴雨中尺度分析[J].高原气象, 30(6): 1554-1565.
[40]Sheng Rifeng, Wang Jun, Gong Dianli, et al.2011.Mesoscale analysis on a heavy rainstorm in Jinan on 18 July 2007[J].Plateau Meteor, 30(6): 1554-1565.
[41]孙继松, 陶祖钰.2012.强对流天气分析与预报中的若干基本问题[J].气象, 38(4): 164-173.
[42]Sun Jisong, Tao Zuyu.2012.Some essential issues connected with severe convective weather analysis and forecast[J].Meteor Mon, 38(4): 164-173.
[43]王宗敏, 丁一汇, 张迎新, 等.2014.副高外围对流雨带中的对流—对称不稳定及锋生的诊断分析[J].大气科学, 38(1): 133-145.
[44]Wang Zongmin, Ding Yihui, Zhang Yinxin, et al.2014.Analysis of convective-symmetric instabilities and frontogenesis in a convective band on the northwest edge of WPSH[J].Chinese J Atmos Sci, 38(1): 133-145.
[45]夏茹娣, 赵思雄, 孙建华.2006.一类华南锋前暖区暴雨<i>β</i>中尺度系统环境特征的分析研究[J].大气科学, 30(5): 988-1007.
[46]Xia Rudi, Zhao Sixiong, Sun Jianhua.2006.A study of circumstances of meso-<i>β</i>-scale systems of strong heavy rainfall in warm sector ahead of fronts in South China[J].Chinese Journal of Atmosphere Sciences, 30(5): 988-1007.
[47]杨显玉, 文军, 王大勇, 等.2016.一次甘肃强降水过程的数值模拟与诊断分析[J].高原气象, 35(3): 726-733.
[48]Yang Xianyu, Wen Jun, Wang Dayong, et al.2016.Numerical simulation and diagnostic analysis on a rainstorm event in Gansu[J].Plateau Meteor, 35(3): 726-733.DOI: 10.7522/j.issn.1000-0534.2015.00048.
[49]杨引明, 朱雪松.2011.一次引发强降水热带低压对流云团的多尺度特征分析[J].热带气象学报, 27(4): 542-550.
[50]Yang Yinming, Zhu Xuesong.2011.Analysis of multi-scale character of convective cloud clusters causing heavy rain[J].J Trop Meteor, 27(4): 542-550.
[51]袁美英, 李泽椿, 张小玲, 等.2011.中尺度对流系统与东北暴雨的关系[J].高原气象, 30(5): 1224-1231.
[52]Yuan Meiying, Li Zechun, Zhang Xiaoling, et al.2011.Relationship between mesoscale convective system and rainstorm in Northeast China[J].Plateau Meteor, 30(5): 1224-1231.
[53]张迎新, 李宗涛, 姚学祥.2015.京津冀"7·21"暴雨过程的中尺度分析[J].高原气象, 34(1): 202-209.
[54]Zhang Yingxin, Li Zongtao, Yao Xuexiang.2015.Analysis on mesoscale system of torrential rain occurring over North China on 21 July 2012[J].Plateau Meteor, 34(1): 202-209.DOI: 10.7522/j.issn.1000-0534.2013.00096.
[55]张雅斌, 马晓华, 冉令坤, 等.2016.关中地区两次初夏区域性暴雨过程特征分析[J].高原气象, 35(3): 708-725.
[56]Zhang Yabin, Ma Xiaohua, Ran Lingkun, et al.2016.Characteristic analysis on two regional rainstorms at Guanzhong in early summer[J].Plateau Meteor, 35(3): 708-725.DOI: 10.7522/j.issn.1000-0534.2015.00014.
[57]赵彩萍, 赵桂香.2012.山西中部一次致灾暴雨中尺度特征[J].气象科技, 40(5): 807-813.
[58]Zhao Caiping, Zhao Guixiang.2012.Meso-scale analysis of a disastrous heavy rain in Shanxi[J].Meteor Sci Technol, 40(5): 807-813.
[59]赵桂香.2009.一次阻高背景下地形对晋南特大暴雨的作用分析[J].高原气象, 28(4): 897-905.
[60]Zhao Guixiang.2009.Analysis on impact of terain on extremely rainstorm in Sourhern Shanxi under the background of block high[J].Plateau Meteor, 28 (4): 897-905.
[61]赵桂香, 范卫东, 刘志斌, 等.2012."8.18-19"山西中南部暴雨天气特征分析[J].高原气象, 31(5): 1309-1319.
[62]Zhao Guixiang, Fan Weidong, Liu Zhibin, et al.2012.Analyses on rainstorm characteristics in middle and south of Shanxi province during 18-19 August 2010[J].Plateau Meteor, 31 (5): 1309-1319.
[63]赵桂香, 赵建峰, 杨东, 等.2013.山西一次大暴雨过程云图及环境场的特征分析[J].高原气象, 32(6): 1747-1757.
[64]Zhao Guixiang, Zhao Jianfeng, Yang Dong, et al.2013.Chracteristics of cloud chart and environment field on a heavy rain process in Shanxi province[J].Plateau Meteor, 32(6): 1747-1757.DOI: 10.7522/j.issn.1000-0534.2012.00163.
[65]赵桂香, 王思慜, 邱贵强, 等.2015.孤立云团造成的一次强对流天气分析[J].干旱气象, 33(1): 98-109.
[66]Zhao Guixiang, Wang Simin, Qiu Guiqiang, et al.2015.Analysis of a severe convective weather caused by isolated cloud cluster on 22 May 2013 in Shanxi province[J].J Arid Meteor, 33(1): 98-109.
[67]赵宇, 崔晓鹏, 高守亭.2011.引发华北特大暴雨过程的中尺度对流系统的结构特征研究[J].大气科学, 35(5): 945-962.
[68]Zhao Yu, Cui Xiaopeng, Gao Shouting.2011.A study of structure of mesoscale systems producing a heavy rainfall event in North China[J].Chinese J Atmos Sci, 35(5): 945-962.
[69]周海光, 郭福巍.2007.梅雨锋暴雨中尺度对流系统结构模拟的双多普勒雷达研究[J].南京气象学院学报, 30(1): 1-8.
[70]Zhou Haiguang, Guo Fuwei.2007.Meso <i>β</i> and <i>γ</i> scale structure of heavy rain on meiyu front detected by dual-doppler radar[J].Journal of Nanjing Institute of Meteorology, 30(1): 1-8.
[71]周玉淑, 邓国, 黄仪虹.2004.长江流域一次暴雨过程中的不稳定条件分析[J].气象学报, 61(3): 323-333.
[72]Zhou Yushu, Deng Guo, Huang Yihong.2004.Analysis on instability condition during a torrential rain over Yangzi River Basin[J].Acta Meteor Sinica, 61(3): 323-333.
[73]周玉淑, 刘玉路, 朱科锋, 等.2014.北京"7·21"特大暴雨过程中尺度系统的模拟及演变特征分析[J].大气科学, 38(5): 885-896.
[74]Zhou Yushu, Liu Yulu, Zhu Kefeng, et al.2014.Simulation and evolution characteristics of mesoscale systems occurring in Beijing on 21 July 2012[J].Chinese J Atmos Sci, 38 (5): 885-896.
文章导航

/