论文

CMIP5模式对西南地区气温的模拟能力评估

  • 伍清 ,
  • 蒋兴文 ,
  • 谢洁
展开
  • 中国气象局成都高原气象研究所/高原与盆地暴雨旱涝灾害四川省重点实验室, 成都 610072;江苏省张家港市气象局, 张家港 215600

收稿日期: 2015-11-03

  网络出版日期: 2017-04-28

基金资助

国家自然科学基金项目(91337107,41405043);四川省气象局科学技术研究开发课题青年基金(川气课题2014-青年-02)

Evaluation of Surface Air Temperature in Southwestern China Simulated by the CMIP5 Models

  • WU Qing ,
  • JIANG Xingwen ,
  • XIE Jie
Expand
  • Institute of Plateau Meteorology, China Meteorological Administration, Chengdu/Heavy Rain and Drought-Flood Disasters in Plateau and Basin Key Laboratory of Sichuan Province, Chengdu 610072, China;Zhangjiagang Meteorological Bureau, Zhangjiagang 215600, China

Received date: 2015-11-03

  Online published: 2017-04-28

摘要

利用1961-2005年西南地区(四川、贵州、云南、重庆)115个站点的地表气温观测资料以及国际耦合模式比较第五阶段(CMIP5)的历史模拟试验数据,从气温增暖强度、年代际变化和突变三个角度,评估了40个全球气候系统模式对西南地区地表气温的模拟能力。结果表明:大部分模式能模拟出近45年来西南地区不同分区年平均气温的显著升高趋势,但仅6个模式能较好的模拟出地表气温增温幅度的海拔依赖性特征。海拔较低的四川盆地、重庆丘陵地区年平均气温在20世纪60年代至80年代后期呈降温趋势,80年代末开始升温,70年代中期到90年代中期是一个相对较冷的时期,10个模式能模拟出这种降温趋势,其中3个模式模拟降温趋势、年代际偏冷时间与观测结果最为接近,模拟效果较好。所有模式均不能模拟出气温的突变特征。总体来说,对西南地区气温变化模拟相对较好的模式有ACCESS1.0、CESM1-WACCM、CMCC-CMS、GFDL-CM2.1、GISS-E2-R-CC、MRI-ESM1、NorESM1-ME,其中,模拟效果最好的模式为ACCESS1.0。

本文引用格式

伍清 , 蒋兴文 , 谢洁 . CMIP5模式对西南地区气温的模拟能力评估[J]. 高原气象, 2017 , 36(2) : 358 -370 . DOI: 10.7522/j.issn.1000-0534.2016.00046

Abstract

The simulated abilities of 40 models for the surface air temperature in Southwestern China (SWC) are evaluated from the perspective of the warming amplitude, interdecadal variation and abrupt changes by using the surface air temperature observational data at 115 stations in Southwestern China (Sichuan, Guizhou, Yunnan and Chongqing) from 1961 to 2005 and the output of the historical simulations from 40 models participating in the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5). The results show that most of the models can reproduce the increasing trend of the annual mean temperature in different areas of SWC in recent 45 years, however, only six models can better capture the features that the increasing amplitude of the surface air temperature is dependent on altitude. Annual mean temperature in lower altitude Sichuan Basin and Chongqing hills presents dropping trend from 1960s to 1980s, increasing trend from the late 1980s, and cool period from the middle of 1970s to the middle of 1990s. 10 modes could simulated the cooling trend, but the cooling trend and decadal slants cold time is well simulated in only 3 models. All models failed to simulate the characteristics of the temperature mutations. In general, model ACCESS1.0、CESM1-WACCM、CMCC-CMS、GFDL-CM2.1、GISS-E2-R-CC、MRI-ESM1、NorESM1-ME are relatively well in simulating the change of the surface air temperature in SWC, among them, the best is ACCESS1.0.

参考文献

[1]Jiang D B, Tian Z P, and Lang X M.2016.Reliability of climate models for China through the IPCC third to fifth assessment reports[J].Int J Climatol, 36(3): 1114-1133.
[2]Li X W, Zhou X J, Li W L, et al.1995.The cooling of Sichuan province in recent 40 years and its probable mechanisms[J].Acta Meteor Sinica, 9(1): 57-68.
[3]Liu X D, Chen B D.2000.Climatic warming in the Tibetan Plateau during recent decades[J].Int J Climatol, 20(14): 1729-1742.
[4]Taylor K E, Stouffer R J, Meehl G A.2012.An overview of CMIP5 and the experiment design[J].Bull Amer Meteor Soc, 93(4): 485-498.
[5]Xu Y, Xu C H.2012.Preliminary assessment of simulations of climate changes over China by CMIP5 multi-models[J].Atmos Ocean Sci Lett, 6(5): 489-494.
[6]Zhou L G, Wang D, Dai S B, et al.2009.A study on the exceptionally low flow of Yangtze River in the flood season of 2006[J].J Natural Resour, 24(3): 448-456.
[7]陈活泼.2013.CMIP5模式对21世纪末中国极端降水事件变化的预估[J].科学通报, 58(8): 743-752.
[8]Chen Huopo.2013.Projected change in extreme rainfall events in China by the end of the 21st century using CMIP5 models[J].Chin Sci Bull, 58(8): 743-752.
[9]陈隆勋, 朱文琴, 王文, 等.1998.中国近45年来气候变化的研究[J].气象学报, 56(3): 257-271.
[10]Chen Longxun, Zhu Wenqin, Wang Wen, et al.1998.Studies on climate change in China in recent 45 years[J].Acta Meteor Sinica, 56(3): 257-271.
[11]陈隆勋, 邵永宁, 张清芬.1991.近四十年我国气候变化的初步分析[J].应用气象学报, 2(2): 164-173.
[12]Chen Longxun, Shao Yongning, Zhang Qinfen.1991.Preliminary analysis of climatic change during the last 39 years in China[J].J Appl Meteor Sci, 2(2): 164-173.
[13]陈晓晨, 徐影, 许崇海, 等.2014.CMIP5全球气候模式对中国地区降水模拟能力的评估[J].气候变化研究进展, 10(3): 217-225.
[14]Chen Xiaochen, Xu Ying, Xu Chonghai, et al.2014.Assessment of Precipitation Simulations in China by CMIP5 Multi-models[J].Progressus Inquisitiones DE Mutatione Climatis, 10(3): 217-225.
[15]范丽军.2010.统计降尺度方法集合预估华东气温的初步研究[J].高原气象, 29(2): 392-402.
[16]Fan Lijun.2010.Preliminary study of statistically downscaled temperature ensemble predictions in Eastern China[J].Plateau Meteor, 29(2): 392-402.
[17]郭彦, 董文杰, 任福民, 等.2013.CMIP5模式对中国年平均气温模拟及其与CMIP3模式的比较[J].气候变化研究进展, 9(3): 181-186.
[18]Guo Yan, Dong Wenjie, Ren Fumin, et al.2013.Assessment of CMIP5 simulations for China annual average surface temperature and its comparison with CMIP3 simulations[J].Progressus Inquisitiones DE Mutatione Climatis, 9(3): 181-186.
[19]黄海玲, 江志红, 王志福, 等.2015.CMIP5模式对东亚500 hPa高度场主要模态时空结构模拟能力的评估[J].气象学报, 73(1): 110-127.
[20]Huang Hailing, Jiang Zhihong, Wang Zhifu, et al.2015.The evaluation of the 500 hPa geopotential height's main modes in East Asia as done by the CMIP5 models[J].Acta Meteor Sinica, 73(1): 110-127.
[21]胡芩, 姜大膀, 范广洲.2014.CMIP5全球气候模式对青藏高原地区气候模拟能力评估[J].大气科学, 38(5): 924-938.
[22]Hu Qin, Jiang Dabang, Fan Guangzhou.2014.Evaluation of CMIP5 Models over the Qinghai-Tibetan Plateau[J].Chinese J Atmos Sci, 38(5): 924-938.
[23]姜燕敏, 吴昊旻.2013.20个CMIP5模式对中亚地区年平均气温模拟能力评估[J].气候变化研究进展, 9(2): 110-116.
[24]Jiang Yanmin, Wu Haomin.2013.Simulation capabilities of 20 CMIP5 models for annual mean air temperatures in Central Asia[J].Progressus Inquisitiones DE Mutatione Climatis, 9(2): 110-116.
[25]李秀萍, 徐宗学, 程华琼.2012.多模式集合预估21世纪淮河流域气候变化情景[J].高原气象, 31(6): 1622-1635.
[26]Li xiuping, Xu zongxue, Cheng huaqiong.2012.Projection of climate change with various emission scenarios over Huaihe river basin in the 21<sup>st</sup> century[J].Plateau Meteor, 31(6): 1622-1635.
[27]李振朝, 韦志刚, 吕世华, 等.2013.CMIP5部分模式气温和降水模拟结果在北半球及青藏高原的检验[J].高原气象, 32(4): 921-928.
[28]Li Zhenchao, Wei Zhigang, Lü Shihua, et al.2013.Verification of surface air temperature and precipitation from CMIP5 model in northern hemisphere and Qinghai-Xizang Plateau[J].Plateau Meteor, 32(4): 921-928.DOI: 10.7522/j.issn.1000-0534.2012.00088.
[29]马振锋, 彭骏, 高文良, 等.2006.近40年西南地区的气候变化事实[J].高原气象, 25(4): 633-642.
[30]Ma Zhenfeng, Peng Jun, Gao Wenliang, et al.2006.Climate variation of southwest China in recent 40 years[J].Plateau Meteor, 25(4): 633-642.
[31]唐红玉, 翟盘茂.2005.1951-2002年中国东、西部地区地面气温变化对比[J].地球物理学报, 48(3): 526-534.
[32]Tang Hongyu, Zhai Panmao.2005.Comparison of variations of surface air temperatures in eastern and western China during 1951-2002[J].Chinese J Geophys, 48(3): 526-534.
[33]汪方, 丁一汇.2011.不同排放情景下模拟的21世纪东亚积雪面积变化趋势[J].高原气象, 30(4): 869-877.
[34]Wang Fang, Ding Yihui.2011.Trend of snow cover fraction in East Asia in 21<sup>th</sup> century under different scenarios[J].Plateau Meteor, 30(4): 869-877.
[35]辛晓歌, 吴统文, 张洁.2012.BCC气候系统模式开展的CMIP5试验介绍[J].气候变化研究进展, 8(5): 378-382.
[36]Xin Xiaoge, Wu Tongwen, Zhang Jie.2012.Introduction of CMIP5 experiments carried out by BCC climate system model[J].Progressus Inquisitiones DE Mutatione Climatis, 8(5): 378-382.
[37]姚遥, 罗勇, 黄建斌.2012.8个CMIP5模式对中国极端气温的模拟和预估[J].气候变化研究进展, 8(4): 250-256.
[38]Yao Yao, Luo Yong, Huang Jianbin.2012.Evaluation and projection of temperature extremes over China based on 8 modeling data from CMIP5[J].Progressus Inquisitiones DE Mutatione Climatis, 8(4): 250-256.
[39]尹文有, 田文寿, 琚建华.2010.西南地区不同地形台阶气温时空变化特征[J].气候变化研究进展, 6(6): 429-435.
[40]Yin Wenyou, Tian Wenshou, Ju Jianhua.2010.Spatial-temporal characteristics of temperatures on different terrains of southwest China[J].Adv Climate Change Res, 6(6): 429-435.
[41]张芳, 董敏, 吴统文.2014.CMIP5模式对ENSO现象的模拟能力评估[J].气象学报, 72(1): 30-48.
[42]Zhang Fang, Dong Min, Wu Tongwen.2014.Evaluation of the ENSO features simulations as done by the CMIP5 models[J].Acta Meteor Sinica, 72(1): 30-48.
文章导航

/