论文

20 km高分辨率全球模式对青藏高原夏季降水变化的预估

  • 冯蕾 ,
  • 周天军
展开
  • 中国气象局公共气象服务中心, 北京 100081;中国科学研究院大气物理研究所, 北京 100029

收稿日期: 2015-11-13

  网络出版日期: 2017-06-28

基金资助

国家自然科学基金项目(41205045)

Projection of Summer Precipitation Change over the Qinghai-Tibetan Plateau with a 20 km High-resolution Global Climate Model

  • FENG Lei ,
  • ZHOU Tianjun
Expand
  • Public Meteorological Service Center of China Meteorological Administration, Beijing 100081, China;Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

Received date: 2015-11-13

  Online published: 2017-06-28

摘要

使用日本气象研究所(Meteorological Research Institute,MRI)大气环流模式在20 km分辨率下的国际大气模式比较计划(Atmospheric Model Intercomparison Project,AMIP)试验结果以及A1B温室气体排放情景下(简称A1B情景)的预估试验数据,预估了青藏高原夏季(6-8月)降水的变化,并讨论了降水变化的可能原因。在A1B情景下,青藏高原夏季降水量显著增加,中心位于青藏高原东南部,主要归因于来自印度洋和孟加拉湾的西南水汽,经90°E-100°E附近进入高原的水汽输送显著增加。同时,整个青藏高原夏季强降水出现概率增加,降水频率南部减少,北部增加。高原南部(北部)降水频率的减少(增加)是因为该地区降水强度的增加速率快(慢)于降水量的增加速率。高分辨率MRI模式预估的青藏高原夏季降水变化与较低分辨率的耦合模式预估结果基本一致,但提供了更详细的局地变化信息。

本文引用格式

冯蕾 , 周天军 . 20 km高分辨率全球模式对青藏高原夏季降水变化的预估[J]. 高原气象, 2017 , 36(3) : 587 -595 . DOI: 10.7522/j.issn.1000-0534.2016.00045

Abstract

Projection of future summer precipitation change over the Qinghai-Tibetan Plateau is studied based on AMIP (the Atmospheric Model Intercomparison Project) and the A1B scenario experiment results by a 20 km high-resolution global climate model, MRI. Under the A1B scenario, the summer precipitation would increase significantly, with the biggest increasing center over the southeastern Qinghai-Tibetan Plateau. This is might attributed to the increasing southwest water vapor transportation to the Qinghai-Tibetan Plateau from the Indian Ocean and the Bay of Bengal. The probability of summer precipitation with high intensity is projected to increase over the whole Qinghai-Tibetan Plateau. The summer precipitation frequency over the southern (northern) Qinghai-Tibetan Plateau would decrease (increase), as the increasing rate of precipitation intensity is faster (slower) than that of precipitation amount over the southern (northern) Qinghai-Tibetan Plateau. The precipitation change over the Qinghai-Tibetan Plateau projected by the high-resolution MRI model is almost consistent with coupled models with low-resolution, except for the detail information provided.

参考文献

[1]Alexander L, Zhang X, Peterson T C, et al. 2006. Global observed changes in daily climate extremes of temperature and precipitation[J]. JGeophys Res, 111(D5):1-22.
[2]Chen B, Chao W C, Liu X. 2003. Enhanced climatic warming in the Tibetan Plateau due to doubling CO<sub>2</sub>:a model study[J]. Climate Dyn, 20(4):401-413.
[3]Duan A M, Wu G X. 2006. Change of cloud amount and the climate warming on the Tibetan Plateau[J]. Geophys Res Lett, 33(22):217-234.
[4]Duan A, Wu G, Zhang Q, et al. 2006. New proofs of the recent climate warming over the Tibetan Plateau as a result of the increasing greenhouse gases emissions[J]. Chinese Sci Bull, 51(11):1396-1400.
[5]Feng L, Zhou T J. 2012. Water vapor transport for summer precipitation over the Tibetan Plateau:Multi-dataset analysis[J]. J Geophys Res, 117, 117(D20):20114.
[6]Feng L, Zhou T, Wu B, et al. 2011. Projection of future precipitation change over China with a high-resolution global atmospheric model[J]. Adv Atmos Sci, 28(2), 464-476.
[7]Gao X J, Shi Y, Giorgi F. 2011. A high resolution simulation of climate change over China[J]. Science China Earth Sciences, 54(3):462-472.
[8]Gao X J, Shi Y, Zhang D F, et al. 2012. Uncertainties in monsoon precipitation projections over China:Results from two high resolution RCM simulations[J]. Climate Res, 52:213-226.
[9]Gao X J, Wang M L, Giorgi F. 2013. Climate change over China in the 21<sup>st</sup> century as simulated by BCC_CSM1. 1-RegCM4. 0[J]. Atmos Ocean Sci Lett, 6(5):381-386.
[10]Gao X, Shi Y, Song R, et al. 2008. Reduction of future monsoon precipitation over China:comparison between a high resolution RCM simulation and the driving GCM[J]. Meteor Atmos Phys, 100(1):73-86.
[11]IPCC. 2000. Special Report on Emissions Scenarios[M]. Edited by Nakicenovic Hetal. Cambridge:Cambridge University Press.
[12]Kusunoki S, Mizuta R, Matsueda M. 2011. Future changes in the East Asian rain band projected by global atmospheric models with 20-km and 60-km grid size[J]. Climate Dyn, 37(11):2481-2493.
[13]Kusunoki S, Mizuta R. 2008. Future changes in the Baiu rain band projected by a 20-km mesh global atmospheric model:Sea surface temperature dependence[J]. Sola, 4:85-88.
[14]Kusunoki S, Yoshimura J, Yoshimura H, et al. 2006. Change of Baiu Rain Band in Global Warming Projection by an Atmospheric General Circulation Model with a 20-km Grid Size[J]. J Meteor Soc Japa, 84(4):581-611.
[15]Li H M, Feng L, Zhou T J. 2011a. Multi-model projection of July-August climate extreme changes over China under CO<sub>2</sub> doubling. Part Ⅰ:Precipitation[J]. Adv Atmos Sci, 28(2), 433-447.
[16]Li H M, Feng L, Zhou T J. 2011b. Multi-model projection of July-August climate extreme changes over China under CO<sub>2</sub> doubling. Part Ⅱ:Temperature[J]. Adv Atmos Sci, 28(2), 448-463.
[17]Liu X D, Chen B D. 2000. Climatic warming in the Tibetan Plateau during recent decades[J]. Int J Climatol, 20(14):1729-1742.
[18]Meehl G A. 2007. Global climate projections, in Climate Change 2007:The Physical Science Basis:Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Edited by Solomon S, et al. Cambridge:Cambridge University Press.
[19]Meehl G, Arblaster J, Tebaldi C. 2005. Understanding future patterns of increased precipitation intensity in climate model simulations[J]. Geophys Res Lett, 32(18), 1-4.
[20]Peterson T. 2005. Climate change indices[J]. WMO Bulletin, 54(2):83-86.
[21]Su F G, Duan X L, Chen D L, et al. 2013. Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau[J]. J Climate, 26(10):3187-3208.
[22]Wang B, Bao, Hoskins B, et al. 2008. Tibetan Plateau warming and precipitation changes in East Asia[J]. J Geophys Res, 35(14):63-72.
[23]Xu J, Yu S, Liu J, et al. 2009. The implication of heat and water balance changes in a lake basin on the Tibetan Plateau[J]. Hydrological Research Letters, 3:1-5.
[24]Xu Y, Gao X J, Giorgi F. 2009. Regional variability of climate change hot-spot in East Asia[J]. Adv Atmos Sci, 26(4):783-792.
[25]You Q, Kang S C, Aguilar E, et al. 2008. Changes in daily climate extremes in the eastern and central Tibetan Plateau during 1961-2005[J]. J Geophys Res, 113(D7):1639-1647.
[26]Yukimoto S, Noda A, Kitoh A, et al. 2006. The Meteorological Research Institute Coupled GCM, Version 2. 3(MRI-CGCM2. 3)-Control climate and climate sensitivity[J]. J Meteor Soc Japan, 84:333-363.
[27]Zhai P, Zhang X, Wan H, et al. 2005. Trends in total precipitation and frequency of daily precipitation extremes over China[J]. J Climate, 18:1096-1108.
[28]Zhou T J, Yu R C, Chen H M, Dai A G, et al. 2008. Summer precipitation frequency, intensity, and diurnal cycle over China:A comparison of satellite data with raingauge observations[J]. J Climate, 21(16):3997-4010.
[29]Zhou T J, Yu R C. 2005. Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China[J]. J Geophys Res, 110(8):211-211.
[30]Feng Lei, Zhou Tianjun. 2015. Simulation of summer precipitation and associated water vapor transport over the Tibetan Plateau by Meteorological Research Institute model[J]. Chinese J Atmos Sci, 39(2):385-396.<br/>冯蕾, 周天军. 2015.高分辨率MRI模式对青藏高原夏季降水及水汽输送通量的模拟[J].大气科学, 39(2):386-398.
[31]Gao Xuejie, Li Dongliang, Zhao Zongci, et al. 2003. Numerical simulation for influence of greenhouse effects on climatic change of Qinghai-Xizang Plateau along Qinghai-Xizang railway[J]. Plateau Meteor, 22(5):458-463.<br/>高学杰, 李栋梁, 赵宗慈, 等. 2003.温室效应对我国青藏高原及青藏铁路沿线气候影响的数值模拟[J].高原气象, 22(5):458-463.
[32]Hu Qin, Jiang Dabang, Fan Guangzhou. 2015. Climate change projection on the Tibetan Plateau:Results of CMIP5 models[J]. Chinese J Atmos Sci, 39(2):260-270.<br/>胡芩, 姜大膀, 范广洲. 2015.青藏高原未来气候变化预估:CMIP5模式结果[J].大气科学, 39(2):260-270.
[33]Xie Chengying, Li Minjiao, Zhang Xueqing, et al. 2015. Moisture transport features in summer and its rainfall effects over key region in southern margin of Qinghai-Xizang Plateau[J]. Plateau Meteor, 34(2):327-337.<br/>解承莹, 李敏娇, 张雪芹, 等. 2015.青藏高原南缘关键区夏季水汽输送特征及其与高原降水的关系[J].高原气象, 34(2):327-337.
[34]Xu Jianyu, Wang Huijuan, Li Hongyi. 2014. Preliminary simulation analysis of moisture budget over Qinghai-Xizang Plateau in summer[J]. Plateau Meteor, 33(5):1173-1181.<br/>许建玉, 王慧娟, 李宏毅. 2014.夏季青藏高原地区水汽收支的初步模拟分析[J].高原气象, 33(5):1173-1181.
[35]Zheng Ran, Li Dongliang, Jiang Yuanchun, et al. 2015. New characteristics of temperature change over Qinghai-Xizang Plateau on the background of global warming[J]. Plateau Meteor, 34(6):1531-1539.<br/>郑然, 李栋梁, 蒋元春, 等. 2015.全球变暖背景下青藏高原气温变化的新特征[J].高原气象, 34(6):1531-1539.
文章导航

/