论文

基于CloudSat卫星资料的青藏高原云系发生频率及其结构

  • 刘建军 ,
  • 陈葆德
展开
  • 南京信息工程大学大气科学学院, 南京 210044;中国气象局旱区特色农业气象灾害监测预警与 风险管理重点实验室, 银川 750002;中国气象局上海台风研究所, 上海 200030

收稿日期: 2016-11-29

  网络出版日期: 2017-06-28

基金资助

国家重点研发计划“政府间科技合作项目”重点专项(2016YFE0109700)

Cloud Occurrence Frequency and Structure over the Qinghai-Tibetan Plateau from CloudSat Observation

  • LIU Jianjun ,
  • CHEN Baode
Expand
  • College of Atmospheric Science, Nanjing University of Information Science & Technology, Nanjing 210044, China;Key Laboratory for Meteorological Disaster Monitoring and Early Warning and Risk Management of Characteristic Agriculturein in Arid Regions, China Meteorological Administration, Yinchuan 750002, China;Shanghai Typhoon Institute, China Meteorological Administration, Shanghai 200030, China

Received date: 2016-11-29

  Online published: 2017-06-28

摘要

应用2006年5月至2013年5月7年的CloudSat卫星观测资料,针对青藏高原上空不同高度、不同季节8类云(卷云、高层云、高积云、层云、层积云、积云、雨层云、浓积云)的发生频率,分析研究了青藏高原地区云的水平和垂直分布特征及其物理成因,为数值预报模式对云系模拟能力的评估提供了有效的验证信息。研究表明:青藏高原云的发生频率为35%,其中:低云的频率最大,接近21%;中云次之,频率14%;高云的频率最小。垂直分布上,低云最大频率的高度为5~6 km,中云为7~8 km,高云为11~12 km。水平分布上,高原东南部、西北部云发生频率较高,是高原的两个相对多云中心。低云与总的云频率水平分布基本一致;中云是高原北部、中部频率高,南部低,与低云明显不同;高云主要是夏季在高原南部频率高。从不同季节来看,冬季高原西部的低云频率高;春季高原中北部的中云频率高,西部和东南部的低云频率高;夏季南部的低云和高云频率高;秋季云发生频率都很低。在物理成因上,低云的形成主要是地形抬升作用,中云的形成与高原热力作用相关。

本文引用格式

刘建军 , 陈葆德 . 基于CloudSat卫星资料的青藏高原云系发生频率及其结构[J]. 高原气象, 2017 , 36(3) : 632 -642 . DOI: 10.7522/j.issn.1000-0534.2017.00028

Abstract

By using 7-year (Data time series from May 2006 to May 2013) CloudSat observations, occurrence frequencies of 8 cloud types for different levels and seasons over the Qinghai-Tibetan Plateau are constructed to examine characteristics of their horizontal and vertical distributions and related physical causes, which could provide observational information for evaluating cloud simulated by numerical weather prediction models.It is found that the frequency of total cloud occurrence is about 35%.Among low, middle and high clouds, the highest frequency is low cloud near 21%, followed by middle clouds about 14%, and the lowest one is high cloud less than 1%.In terms of vertical structure, the maximum frequency of low clouds at a height of 5~6 km, 7~8 km for middle clouds and 11~12 km for high clouds.High frequency of total cloud occurrence is located in the Southeast and Northwest parts of the Qinghai-Tibetan Plateau which forms two centers of relatively plentiful clouds.The spatial distribution of low cloud frequency is consistent with that of total clouds, middle cloud frequency is high in the north and middle Plateau and low in the South Plateau which is obviously different with low cloud and on the other hand, high cloud frequently occurs in the South Plateau.For seasonal variation, in terms of high frequency of occurrence, during winter low cloud is over the west Plateau; During spring middle cloud over the middle north part and low clouds over the west and southeast; During summer high and low clouds over the south of the Plateau.There is very low occurrence frequency for all kinds of clouds during fall.It was indicated that the formation of low clouds is mainly due to orographic uplift, and middle clouds largely associated with the thermos-dynamical effects of the Plateau.

参考文献

[1]Chen Baode, Liu Xiaodong.2005, Seasonal migration of cirrus clouds over the Asian monsoon regions and the Tibetan Plateau measured from MODIS/Terra[J].Geophy Res Lett, 32(L01):L01804.
[2]Mace G.2008.A NASA earth system science pathfinder mission, CloudSat standard data products handbook[Z].Cooperative Institute for Research in the Atmosphere, Colorado State University, USA.
[3]Lawrence M G.2005.The relationship between relative humidity and the dew point temperature in moist air:A simple conversion and applications[J].American Meteorological Society.BAMS, 2005(2):225-233, doi:10.1175/BAMS-86-2-225.
[4]Li Qinbin, Jiang Jonathan H.Wu Dong L.et al.2005, Convective outflow of South Asian pollution:A global CTM simulation compared with EOS MLS observations[J].Geophys Res Lett, 32(L14):L14826.DOI:10.1029/2005GLO22762.
[5]Luo Yali, Zhang Renhe, Wang Hui.2009.Comparing occurrences and vertical structures of hydrometeors-between the eastern China and the Indian monsoon region using CloudSat/CALIPSO data[J].J Climate, 22(4):1052-1064.
[6]Gao Bocai, Yang Ping, Guo Guang, et al.2003.Measurements of water vapor and high clouds over the Tibetan Plateau with the terra MODIS instrument[J], IEEE Trans Geosci Remote Sens, 41(4):895-900.
[7]Sassen K, Wang Z.2008.Classifying clouds around the globe with the CloudSat radar:1-year of results[J].Geophys Res Lett, 35(L04):L04805.
[8]Wang Z, Sassen K.2007.Level 2 cloud scenario classification product process description and interface control document[J].Version 5.0, Colorado State University, 5:50.
[9]Wang Z, Vane D, Stephens G, et al.2013.Level 2 combined radar and lidar cloud scenario classification product process description and interface control document[Z].Jet Propulsion Laboratory California Institute of Technology.
[10]Yu Rucong, Wang Bin, Zhou Tianjun.2004.Climate effects of the deep continental stratus clouds generated by the Tibetan Plateau[J].J Climate, 17(13):2702-2713.
[11]Chen Baode, Liang Ping, Li Yueqing.2008.An overview of research on clouds over the Tibetan Plateau[J].Plateau Mountain Meteor Res, 28(1):66-71.<br/>陈葆德, 梁萍, 李跃清.2008.青藏高原云的研究进展[J].高原山地气象研究, 28(1):66-71.
[12]Li Yunying, Yu Rucong, Xu Youping, et al.2003.The formation and diurnal changes of stratiform clouds in southern China[J].Acta Meteorologica Sinica, 61(6):733-743.<br/>李昀英, 宇如聪, 徐幼平, 等.2003.中国南方地区层状云的形成和日变化特征分析[J].气象学报, 61(6):733-743.
[13]Liang Ping, Chen Baode, Tang Xu.2010.Identification of cloud types over Tibetan Plateau by satellite remote sensing[J].Plateau Meteor, 29(2):268-277.<br/>梁萍, 陈葆德, 汤绪.2010.青藏高原云型的卫星遥感判别方法研究[J].高原气象, 29(2):268-277.
[14]Wang Keli, Jiang Hao, Chen Shiqiang.2001.Cloud cover over Qinghai-Xizang Plateau:Comparison among meteorological station observations, ISCCP-C2 and NCEP reanalysis data[J].Plateau Meteor, 20(3):252-257.<br/>王可丽, 江灏, 陈世强.2001.青藏高原地区的总云量-地面观测、卫星反演和同化资料的对比分析[J].高原气象, 20(3):252-257.
[15]Wang Shengjie, He Wenying, Chen Hongbin, et al.2010.Statistics of cloud height over the Tibetan Plateau and its surrounding region derived from the CloudSat data[J].Plateau Meteor, 29(1):1-9.<br/>王胜杰, 何文英, 陈洪滨, 等.2010.利用CloudSat资料分析青藏高原、高原南坡及南亚季风区云高度的统计特征量[J].高原气象, 29(1):1-9.
[16]Wang Hui, Luo Yali, Zhang Renhe.2011.Analyzing seasonal variation of clouds over the Asian monsoon regions and the Tibetan Plateau region using CloudSat/CALIPSO data[J].Chinese J Atmos Sci, 35(6):1117-1131.<br/>汪会, 罗亚丽, 张人禾.2011.用CloudSat/CALIPSO资料分析亚洲季风区和青藏高原地区云的季节变化特征[J].大气科学, 35(6):1117-1131.
[17]Wang Shuaihui, Han Zhigang, Yao Zhigang, et al.2011.An analysis of cloud types and macroscopic characteristics over China and its neighborhood based on the CloudSat data[J].Acta Meteor Sinica, 69(5):883-899.<br/>王帅辉, 韩志刚, 姚志刚, 等.2011.基于CloudSat资料的中国及周边地区各类云的宏观特征分析[J].气象学报, 69(5):883-899.
[18]Wei Li, Zhong Qiang.1997.Characterristics of cloud climatology over Qinhai-Xizang Plateau[J].Plateau Meteor, 16(1):10-15.<br/>魏丽, 钟强.1997.青藏高原云的气候学特征[J].高原气象, 16(1):10-15.
[19]Wu Hexuan.1985.The low-level cloud over the Qinghai-Xizang Plateau[M].Beijing:China Meteorological Press.<br/>吴鹤轩.1985.青藏高原的低云[M].北京:气象出版社.
[20]Zhang Hua, Yang Bingyun, Peng Jie, et al.2015.The characteristics of cloud microphysical properties in East Asia with the CloudSat dataset[J].Chinese J Atmos Sci, 39(2):235-248.<br/>张华, 杨冰韵, 彭杰, 等.2015.东亚地区云微物理量分布特征的CloudSat卫星观测研究[J].大气科学, 39(2):235-248.
[21]Zhang Xiao, Duan Keqin, Shi Peihong, et al.2015.Cloud vertical profiles from CloudSat data over the eastern Tibetan Plateau during summer[J].Chinese J Atmos Sci, 39(6):1073-1080.<br/>张晓, 段克勤, 石培宏, 等.2015.基于CloudSat卫星资料分析青藏高原东部夏季云的垂直结构[J].大气科学, 39(6):1073-1080.
[22]Zhang Xueqin, Peng Lili.2007.Variation of total cloud amount and its possible causes over the Qinghai-Xizang Plateau during 19712004[J].Acta Geographica Sinica, 62(9):959-969.<br/>张雪芹, 彭莉莉.2007.1971-2004年青藏高原总云量时空变化及其影响因子[J].地理学报, 62(9):959-969.
[23]Zhao Yanfeng, Wang Donghai, Yin Jinfang, et al.2014.A study on cloud microphysical characteristics over the Tibetan plateau using CloudSat data[J].J Trop Meteor, 30(2):239-248.<br/>赵艳风, 王东海, 尹金方, 等.2014.基于CloudSat资料的青藏高原地区云微物理特征分析[J].热带气象学报, 30(2):239-248.
[24]Zhou Yunhua, Ye Fangde, Zhou Shuxiu, et al.1983.A study on the patterns of the cloud cover by TIROS-N television pictures over Qinghai-Xizang (TIBET) plateau in summer 1979[J].Plateau Meteor, 2(1):39-51.<br/>周允华, 叶芳德, 周树秀, 等.1983.利用TIROS-N卫星云图对1979年夏季青藏高原云量分布的研究[J].高原气象, 2(1):39-51.
[25]Yang Bingyu, Zhang Hua, Peng Jie, et al.2014.Analysis on global distribution characteristics of cloud microphysical and optical properties based on the CloudSat data[J].Plateau Meteor, 33(4):1105-1118.DOI:10.7522/j.issn.1000-0534.2013.00026.<br/>杨冰韵, 张华, 彭杰, 等.2014.利用CloudSat卫星资料分析云微物理和光学性质的分布特征[J].高原气象, 33(4):1105-1118.
[26]Chen Lin, Zhou Yunjun.2015.Different physical properties of summer precipitation cloud over Qinghai-Xizang Plateau and Sichuan Basin[J].Plateau Meteor, 34(3):621-632.DOI:10.7522/j.issn.1000-0534.2014.00036.<br/>陈玲, 周筠珺.2015.青藏高原和四川盆地夏季降水云物理特性差异[J].高原气象, 34(3):621-632.
[27]Li Haoran, Sun Xuejin, Wang Minyan, et al.2015.Research on different types of cloud and variation characteristics of hydrometeors in cloud over China and its neighborhood in daytime[J].Plateau Meteor, 34(6):1625-1635.DOI:10.7522/j.issn.1000-0534.2014.00129.<br/>李浩然, 孙学金, 王旻燕, 等.2015.中国及周边地区白天各类云及其水凝物变化特征研究[J].高原气象, 34(6):1625-1635.
[28]Wang Yi, Bo Yue, Wang Chenghai.2016.Relations of cloud amount to asymmetric diurnal temperature change in Central and Eastern Qinghai-Xizang Plateau[J].Plateau Meteor, 35(4):908-919.DOI:10.7522/j.issn.1000-0534.2015.00033.<br/>王艺, 伯玥, 王澄海.2016.青藏高原中东部云量变化与气温的不对称升高[J].高原气象, 35(4):908-919.
文章导航

/