论文

基于陆面数据同化系统改进中国区域土壤湿度的模拟研究

  • 赖欣 ,
  • 文军 ,
  • 范广洲 ,
  • 宋海清 ,
  • 张永莉 ,
  • 朱丽华 ,
  • 王炳赟
展开
  • 成都信息工程大学大气科学学院 高原大气与环境四川省重点实验室/气候与环境变化联合实验室, 成都 610225;南京信息工程 大学气象灾害预报预警与评估协同创新中心, 南京 210044;内蒙古自治区生态与农业气象中心, 呼和浩特 010051

收稿日期: 2016-07-19

  网络出版日期: 2017-06-28

基金资助

国家自然科学基金项目(41505078,41275079,91537214,41305077,41405069);成都信息工程大学校引进人才启动基金项目(KYTZ201639);公益性行业(气象)科研专项(GYHY201506001,GYHY201006023);四川省教育厅重点项目(16ZA0203);成都信息工程大学中青年学术带头人科研基金(J201516,J201518)

Improvement of Soil Moisture Simulation over Chinese Main Land by LDAS-IAP/CAS-1.0

  • LAI Xin ,
  • WEN Jun ,
  • FAN Guangzhou ,
  • SONG Haiqing ,
  • ZHANG Yongli ,
  • ZHU Lihua ,
  • WANG Bingyun
Expand
  • College of Atmospheric Sciences, Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, Joint Laboratory of Climate and Environment Change, Chengdu University of Information Technology, Chengdu 610225, China;Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China;Ecological and Agricultural Meteorology Center of Inner Mongolia Autonomous Region, Hohhot 010051, China

Received date: 2016-07-19

  Online published: 2017-06-28

摘要

利用中国区域地面气象要素驱动数据集(China Meteorological Forcing Dataset,CMFD),驱动中国科学院大气物理研究所陆面数据同化系统(LDAS-IAP/CAS-1.0),得到了2003-2010年中国区域土壤湿度数据集,同时不考虑同化卫星遥感亮温数据,直接驱动CLM3.0模拟了2003-2010年中国区域土壤湿度时空变化。将二者土壤湿度模拟结果、地面土壤湿度观测值、美国国家环境预报中心(NCEP)气候再分析数据(CFSR)、基于主动和被动微波传感器的全球土壤湿度数据(SM-MW)进行对比分析发现,考虑同化卫星遥感亮温后与不考虑同化模拟的土壤湿度空间分布有明显差异。将模拟、同化土壤湿度值与观测值对比发现,同化后的青海、甘肃、宁夏和陕西地区土壤湿度较模拟结果有一定的改善。相对于CFSR再分析数据和SM-MW遥感反演数据,模拟和同化土壤湿度值在35°N以南对土壤湿度空间分布的细节刻画更为细致。同化卫星遥感亮温数据后,从2003-2010年土壤湿度四季和年平均空间分布看出,土壤湿度空间分布从西北向东南增加。东北、江淮地区及青藏高原为土壤湿度高值区,新疆和内蒙古为土壤湿度低值区。从变化趋势来看,内蒙古、青藏高原和新疆南部年平均土壤湿度呈增加趋势,其他地区以减小趋势为主。

本文引用格式

赖欣 , 文军 , 范广洲 , 宋海清 , 张永莉 , 朱丽华 , 王炳赟 . 基于陆面数据同化系统改进中国区域土壤湿度的模拟研究[J]. 高原气象, 2017 , 36(3) : 776 -787 . DOI: 10.7522/j.issn.1000-0534.2016.00126

Abstract

In order to validate the ability of The Land Data Assimilation System, and provide references for development and application of the system. The Land Data Assimilation System of Institute of Atmospheric Physics, Chinese Academy of Sciences(LDAS-IAP/CAS-1. 0) driven by the china meteorological forcing dataset(CMFD)was used to obtain soil moisture (SM) data from 2003 to 2010 over China. Without considering the assimilation of bright temperature of satellite remote sensing, the community land model version 3. 0 (CLM3. 0) driven by the same forcing data was used to simulate SM from 2003 to 2010 over China. The two simulated SM, observations, climate forecast system reanalysis (CFSR) of national centers for environmental prediction (NCEP) and global soil moisture data record based on active and passive micro wave sensors(SM-MW) were compared with each other. The results showed that the spatial distribution of simulated SM without considering the assimilation of bright temperature of satellite remote sensing and simulated SM considering the assimilation demonstrated obvious difference. Compared with observations, assimilated SM showed some improvement to simulated SM in Qinghai, Gansu, Ningxia and Shaanxi. The simulated and assimilated SM have more detail depiction in southern regions of 35°N compared to the other two products. After assimilation of bright temperature of satellite remote sensing, on the basis of the four seasons and annual SM from 2003 to 2010, the spatial distributions were characterized by a gradually increasing pattern from the northwest to southeast. From the spatial distributions, the most humid regions were located in the Northeast China Plain, the Jianghuai region, and the Qinghai-Tibetan Plateau, whereas dry regions were located in Xinjiang and Inner Mongolia. From the variation trend, the annual SM mainly increased in Inner Mongolia, the Tibetan Plateau and southern Xinjiang, and decreased mainly in other regions.

参考文献

[1]Albergel C, Dorigo W, Reichle R H, et al. 2013. Skill and global trend analysis of soil moisture from reanalyses and microwave remote sensing[J]. J Hydrometeor, 14(4):1259-1277.
[2]Chahine T M. 1992. The hydrological cycle and its influence on climate[J]. Nature, 359(6394):373-380.
[3]Chen Y Y, Yang K, He J, et al. 2011. Improving land surface temperature modeling for dry land of China[J]. J Geophys Res, 116:D20104. DOI:10. 1029/2011JD015921.
[4]Dickinson R E, Oleson K W, Bonan G B, et al. 2006. The Community Land Model and its climate statistics as a component of the Community Climate System Model[J]. J Climate, 19(11):2302-2324. DOI:10. 1175/JCLI3742. 1.
[5]Dorigo W, Oevelen P, Wagner W, et al. 2011. A new international network for in situ soil moisture data[J]. Eos, Transactions American Geophysical Union, 92(17):141-142.
[6]Drusch M, Holmes T, De Rosnay P, et al. 2009. Comparing ERA-40 based L-band brightness temperatures with Skylab observations:A calibration/validation study using the Community Microwave Emission Model[J]. J Hydrometeor, 10(1):213-226.
[7]Drusch M, Wood E, Jackson T. 2001. Vegetative and atmospheric corrections for soil moisture retrieval from passive microwave remote sensing data:Results from the Southern Great Plains Hydrology Experiment 1997[J]. J Hydrometeor, 2(2):181-192.
[8]Guo D L, Wang H J. 2013. Simulation of permafrost and seasonally frozen ground conditions on the Tibetan Plateau, 19812010[J]. J Geophys Res:Atmospheres, 118(11):5216-5230.
[9]Holmes T, Drusch M, Wigneron J P, et al. 2008. A global simulation of microwave emission:Error structures based on output from ECMWF's operational Integrated Forecast System[J]. IEEE Trans Geosci Remote Sens, 46:846-856.
[10]Jia B, Tian X, Xie Z, et al. 2013. Assimilation of microwave brightness temperature in a land data assimilation system with multi-observation operators[J]. J Geophys Res:Atmospheres, 118(10):3972-3985.
[11]Kerry H, Njoku E G. 1990. A semi-empirical model for interpreting microwave emission from semiarid land surfaces as seen from space[J]. IEEE Trans Geosci Remote Sens, 28(3):384-393.
[12]Kohn J, Royer A. 2010. AMSR-E data inversion for soil temperature estimation under snow cover[J]. Remote Sensing of Environment, 2010, 114(12):2951-2961.
[13]Lawrence D M, Oleson K W, Flanner M G, et al. 2011. Parameterization improvements and functional and structural advances in version 4 of the Community Land Model[J]. Journal of Advances in Modeling Earth Systems, 3(1):1-27.DOI:10. 1029/2011MS000045.
[14]Liu Y Y, Parinussa R M, Dorigo W A, et al. 2011. Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals[J]. Hydrology and Earth System Sciences, 15(2):425-436.DOI:10. 5194/hess-15-425-2011.
[15]Liu Y Y, Dorigo W A, Parinussa R M, et al. 2012. Trend-preserving blending of passive and active microwave soil moisture retrievals[J]. Remote Sens Environ, 123:280-297.DOI:10. 1016/j. rse. 2012. 03. 014.
[16]Loew A, Stacke T, Dorigo W, et al. 2013. Potential and limitations of multidecadal satellite soil moisture observations for selected climate model evaluation studies[J]. Hydrol Earth Syst Sci, 17:3523-3542.
[17]Margulis S A, McLaughlin D, Entekhabi D, et al. 2002. Land data assimilation and estimation of soil moisture using measurements from the Southern Great Plains 1997 Field Experiment[J]. Water Resour Res, 38:1299. DOI:10. 1029/2001WR001114.
[18]Suranjana S H, Moorthi S, Pan H L, et al. 2010. The NCEP climate forecast system reanalysis[J]. Bull Amer Meteor Soc, 91(8):1015-1057.
[19]Tian X, Xie Z, Dai A, et al. 2009. A dual-pass variational data assimilation framework for estimating soil moisture profiles from AMSR-E microwave brightness temperature[J]. J Geophys Res, 114(D16):D16102. DOI:10. 1029/2008JD011600.
[20]Tian X J, Xie Z, Dai A. 2010. A microwave land data assimilation system:scheme and preliminary evaluation over China[J], J Geophys Res, 115(D21):D21113. DOI:10. 1029/2010JD014370.
[21]Wagner W, Dorigo W, de Jeu R, et al. 2012. Fusion of active and passive microwave observations to create an essential climate variable data record on soil moisture[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS Annals), 7:315-321.
[22]Wigneron J P, Kerr Y, Waldteufel P, et al. 2007. L-band Microwave Emission of the Biosphere (L-MEB) Model:Description and calibration against experimental data sets over crop fields[J]. Remote Sens Environ, 107:639-655.
[23]Xue B, Wang L, Yang K, et al. 2013. Modeling the land surface water and energy cycles of a mesoscale watershed in the central Tibetan Plateau during summer with a distributed hydrological model[J]. J Geophys Res Atmos, 118:8857-8868.DOI:10. 1002/jgrd. 50696.
[24]Zeng X B, Decker M. 2009. Improving the numerical solution of soil moisture-based richards equation for land models with a deep or shallow water table[J]. J hydrometor, 10:308-319.DOI:10. 1175/2008JHM1011. 1.
[25]Zhang S W, Li H R, Zhang W D, et al. 2006. Estimating the soil moisture profile by assimilating near-surface observations with ensemble Kalman filter (EnKF)[J]. Adv Atmos Sci, 22:936-945.
[26]Jia Binghao, Xie Zhenghui, Tian Xiangjun, et al. 2010. A soil moisture assimilation scheme based on the ensemble Kalman filter using microwave brightness temperature[J]. Sci China Earth Sci, 40(2):239-251.DOI:10. 1007/s11430-009-0122-z.<br/>贾炳浩, 谢正辉, 田向军, 等. 2010.基于微波亮温及集合Kalman滤波的土壤湿度同化方案[J].中国科学, 40(2):239-251.
[27]Lai Xin, Wen Jun, Cen Sixian, et al. 2014. Numerical simulation and evaluation study of soil moisture over China by using CLM4. 0 model[J]. Chinese J Atmos Sci, 38 (3):499-512.<br/>赖欣, 文军, 岑思弦, 等. 2014. CLM4.0模式对中国区域土壤湿度的数值模拟及评估研究[J].大气科学, 38(3):499-512.
[28]Liu Chuan, Yu Ye, Xie Jing, et al. 2015. Applicability of soil temperature and moisture in several datasets over Qinghai-Xizang Plateau[J]. Plateau Meteor, 34(3):653-665.DOI:10. 7522/j. issn. 1000-0534. 2015. 00034.<br/>刘川, 余晔, 谢晋, 等. 2015.多套土壤温湿度资料在青藏高原的适用性[J].高原气象, 34(3):653-665.
[29]Shi Chunxiang, Xie Zhenghui, Qian Hui, et al. 2011. China land soil moisture EnKF data assimilation based on satellite remote sensing data[J]. Sci China Earth Sci, 41(3):375-385.DOI:10. 1007/s11430-010-4160-3.<br/>师春香, 谢正辉, 钱辉, 等. 2011.基于卫星遥感资料的中国区域土壤湿度EnKF数据同化[J].中国科学, 41(3):375-385.
[30]Shi Xiaokang, Wen Jun, Wang Lei, et al. 2010. Application of AMSR-E brightness temperature data in observation and simulation of soil moisture variation over northeast Plateau[J]. Plateau Meteor, 29(3):545-553.<br/>史小康, 文军, 王磊, 等. 2010. AMSR-E卫星亮度温度数据在高原东北部土壤湿度观测和模拟中的应用[J].高原气象, 29(3):545-553.
[31]Yang Yang, Zuo Hongchao, Yang Qidong, et al. 2015. Numerical simulation of transient land surface process over desert-steppe transitional zone in arid areas using Community Land Model[J]. Plateau Meteor, 34(4):923-934.DOI:10. 7522/j. issn. 1000-0534. 2014. 00105.<br/>杨扬, 左洪超, 杨启东, 等. 2015. CLM4. 0模式对干旱区荒漠草原过渡带快速变化陆面过程的数值模拟研究[J].高原气象, 34(4):923-934.
[32]Yin Jifu, Zhen Youfei, Zhan Xiwu, et al. 2016. Review on improving land surface model simulations by assimilating polar-orbiting satellite observations[J]. Plateau Meteor, 35(1):260-276.DOI:10. 7522/j. issn. 1000-0534. 2014. 00137.<br/>尹继福, 郑有飞, 詹习武, 等. 2016.同化极轨卫星陆地产品对改善陆面模式模拟能力研究进展[J].高原气象, 35(1):260-276.
[33]Zhang Shenglei, Xie Zhenghui, Tian Xiangjun, et al. 2006. A soil moisture assimilation scheme with an unsaturated soil water flow model and in Site observation[J]. Adv Earth Sci, 21(12):1350-1362.<br/>张生雷, 谢正辉, 田向军, 等. 2006.基于土壤水模型及站点资料的土壤湿度同化方法[J].地球科学进展, 21(12):1350-1362.
[34]Zhang Shenglei, Xie Zhenghui, Shi Chunxiang, et al. 2008. Applications of Ensemble Kalman Filter in Soil Moisture Assimilation[J]. Chinese J Atmos Sci, 32(6):1419-1430.<br/>张生雷, 谢正辉, 师春香, 等. 2008.集合Kalman滤波在土壤湿度同化中的应用[J].大气科学, 32(6):1419-1430.
[35]Zhao Jie, Xu Zongxue, Zuo Depeng. 2013. Spatiotemporal variation of potential evapotranspiration in the Heihe river basin[J]. Journal of Beijing Normal University (Natural Science), 49(2/3):164-169.<br/>赵捷, 徐宗学, 左德鹏. 2013.黑河流域潜在蒸散发量时空变化特征分析[J].北京师范大学学报(自然科学版), 49(2/3):164-169.
[36]Zhu Cheng, Shi Chunxiang, Xi Lin, et al. 2013. Simulation and assessment of soil moisture at different depths in China area[J]. Meteorological Science and Technology, 41(3):529-536.<br/>朱晨, 师春香, 席琳, 等. 2013.中国区域不同深度土壤湿度模拟和评估[J].气象科技, 41(3):529-536.
文章导航

/