论文

飑线优化识别及雷暴大风分析

  • 李哲 ,
  • 李国翠 ,
  • 刘黎平 ,
  • 杨吉
展开
  • 国网河南省电力公司电力科学研究院, 郑州 450052;中国气象科学研究院灾害天气国家重点实验室, 北京 100081;石家庄市气象局, 石家庄 050081;江苏省气象科学研究所, 南京 210009

收稿日期: 2015-12-08

  网络出版日期: 2017-06-28

基金资助

国家自然科学基金项目(41575049);灾害天气国家重点实验室开放课题(2014LASW-B02);国家电网公司重大基础前瞻科技项目(SG20141187);河北省气象局重点项目(14ky04);河北暴雨创新团队;石家庄市科学技术研究与发展计划项目(171241143A)

Optimal Identification Method of Squall Line and Thunderstorm Winds Analysis

  • LI Zhe ,
  • LI Guocui ,
  • LIU Liping ,
  • YANG Ji
Expand
  • State Grid henan Electric Power Research Institute, Zhengzhou 450052, China;State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China;Shijiazhuang Meteorological Bureau, Shijiazhuang 050081, China;Jiangsu Institute of Meteorological of Sciences, Nanjing 210009, China

Received date: 2015-12-08

  Online published: 2017-06-28

摘要

飑线是产生灾害大风的重要系统,强度和影响范围大。本文在线状中尺度对流系统自动识别基础上,提出了飑线优化识别方法,识别主要参数选取反射率因子、长轴长度、系统面积和线性程度,按照反射率因子5 dBZ递增原则,选取四组识别参数对雷达回波多次识别,择优选取线性程度高且包含较强回波的飑线作为当前体扫的飑线最优识别结果。通过对140个体扫126个飑线识别效果检验和对应大风分析,结果表明:优化识别方法能够同时识别强、弱飑线,真实反应飑线发展的不同阶段,比单一参数识别效果明显改善,优化识别命中率分别比四组参数识别提高了26.3%、10%、40%和89%;在有利的环境条件下,雷暴大风出现在飑线的强回波带、弓形回波前沿和线风暴之间断裂带上,飑线识别区域与灾害大风吻合,可作为大风预警区域;飑线大风的风向基本沿风暴移动方向吹。

本文引用格式

李哲 , 李国翠 , 刘黎平 , 杨吉 . 飑线优化识别及雷暴大风分析[J]. 高原气象, 2017 , 36(3) : 801 -810 . DOI: 10.7522/j.issn.1000-0534.2016.00040

Abstract

Squall line is an important system to produce thunderstorm wind, which has great strength and wide influence. Based on automatic identification of linear mesoscale convective system, optimal identification method of squall line is put forward. The main parameters are reflectivity factor, long axis length, area and linear degree. The radar echo is identified by using four groups single parameters, reflectivity factor is increased by 5 dBZ. It is the best result of optimal identification which has high linear degree and strongest echo. The performance of the method is evaluated and the corresponding wind is analyzed based on 140 body scan and 126 squall lines, the results show:The optimal identification method can identify strong and weak squall line at the same time, really response squall line at different stages of development, and the effect is improved more obviously than single parameter method. The hit rate of optimal identification method is improved 26. 3%, 10%, 40% and 89% than the method of four groups single parameters identification. Strong thunderstorm winds occur in strong echo band of squall line, bow echo edge and the gap between different storms, the area of squall line recognition and disaster winds is quite similar, and it can be used as a gale warning area. The wind direction of squall line is mostly along the moving direction of the storm.

参考文献

[1]Chen G T J, Chou H C. 1993. General characteristics of squall lines observed in TAMEX[J]. Mon Wea Rev, 121(3):726-733.
[2]Geerts B. 1998. Mesoscale convective systems in the southeast united states during 1994-95:A Survey[J]. Wea Forecasting, 13(9):860-869.
[3]Gallus Jr W A, Snook N A, Johnson E V. 2008. Spring and summer severe weather reports over the midwest as a function of convective mode:A preliminary study[J]. Wea Forecasting, 23(1):101-113.
[4]Johns R H, Hirt W D. 1987. Derechos:Widespread convectively induced windstorms[J]. Wea Forecasting, 2(1):32-49.
[5]Meng Z, Yan D, Zhang Y. 2013. General features of squall lines in East China[J]. Mon Wea Rev, 141(5):1629-1647.
[6]Parker MD, Johnson RH. 2000. Organizational modes of midlatitude mesoscale convective systems[J]. Mon Wea Rev, 128(10):3413-3436.
[7]Diao Xiuguang, Meng Xiangui, Wan Mingbo, et al. 2015. Radar echo characteristics and warning of bow echoes evolved from early developing squall lines and weakening linear heavy rainstorms[J]. Plateau Meteor, 34(5):1486-1494. DOI:10.7522/j.issn,1000-0534.2014.00097.<br/>刁秀广, 孟宪贵, 万明波, 等. 2015.源于飑线前期和强降雨带后期的弓形回波雷达产品特征及预警[J].高原气象, 34(5):1486-1494.
[8]Fu Guiqin, Cao Xin. 2012. The characteristic analysis of thunderstorm gale and electrical network disaster in Hebei[J]. Meteor Mon, 38(3):353-357.<br/>付桂琴, 曹欣. 2012.雷雨大风与河北电网灾害特征分析[J].气象, 38(3):353-357.
[9]Hu Wendong, Yang Kan, Huang Xiaoyu, et al. 2015. Analysis on a severe convection triggered by gust front in Yinchuan with radar data[J]. Plateau Meteor, 34(5):1452-1464. DOI:10. 7522/j. issn. 1000-0534. 2014. 00099.<br/>胡文东, 杨侃, 黄小玉, 等. 2015.一次阵风锋触发强对流过程雷达资料特征分析[J].高原气象, 34(5):1452-1464.
[10]Li Guocui, Liu Liping, Lian Zhiluan, et al. 2014. Statistical study of the identification of thunderstorm gale based on the radar 3D mosaic data[J]. Acta Meteor Sinica, 72(1):168-181.<br/>李国翠, 刘黎平, 连志鸾, 等. 2014.利用雷达回波三维拼图资料识别雷暴大风统计研究[J].气象学报, 72(1):168-181.
[11]Li Guocui, Liu Liping, Zhang Bingxiang, et al. 2013. Automatic identification of ground thunderstorm gale based on Radar mosaic 3D data[J]. Acta Meteor Sinica, 71(6):1160-1171.<br/>李国翠, 刘黎平, 张秉祥, 等. 2013.基于雷达三维组网数据的对流性地面大风自动识别[J].气象学报, 71(6):1160-1171.
[12]Wang Fuxia, Pei Yujie, Yang Xiaoliang, et al. 2011. Characteristic of heavy precipitation and gale analysis of supercell storm on 23 July 2009[J]. Plateau Meteory, 30(6):1690-1700.<br/>王福侠, 裴宇杰, 杨晓亮, 等. 2011. "090723"强降水超级单体风暴特征及强风原因分析[J].高原气象, 30(6):1690 -1700.
[13]Wang Hongyan, Liu Liping, Wang Gaili, et al. 2009. Development and application of the Doppler weather radar 3-D digital mosaic system[J]. J Appl Meteor Sci, 20(2):214-223.<br/>王红艳, 刘黎平, 王改利, 等. 2009.多普勒天气雷达三维数字组网系统开发及应用[J].应用气象学报, 20(2):214-223.
[14]Wang Hongyan, Liu Liping, Xiao Yanjiao, et al. 2009. Design and implementation of the CINRAD 3D digital mosaic system[J]. Meteor Mon, 35(6):13-18.<br/>王红艳, 刘黎平, 肖艳娇, 等. 2009.新一代天气雷达三维数字组网软件系统设计与实现[J].气象, 35(6):13-18.
[15]Wang Xiuming, Yu Xiaoding, Zhou Xiaogang. 2012. Study on the formation and evolution of '6·3' damage wind[J]. Plateau Meteor, 31(2):504-514.<br/>王秀明, 俞小鼎, 周小刚. 2012. "6·3"区域致灾雷暴大风形成及维持原因分析[J].高原气象, 31(2):504-514.
[16]Xiao Yanjiao, Liu Liping. 2006. Study of methods for interpolating data from weather radar network to 3-D grid and mosaics[J]. Acta Meteor Sinica, 64(5):647-656.<br/>肖艳姣, 刘黎平. 2006.新一代天气雷达网资料的三维格点化及拼图方法研究[J].气象学报, 64(5):647-656.
[17]Yang Ji, Liu Liping, Xia Wenmei, Xu Fen, et al. 2014. Linear mesoscale convective systems (MCSs) identification based on dynamic templet function[J]. Meteor Mon, 40(11):1404-1412.<br/>杨吉, 刘黎平, 夏文梅, 等. 2014. 基于动态模板函数的线性中尺度对流系统自动识别[J]. 气象, 40(11): 1404-1412.
[18]Yu Xiaoding, Yao Xiuping, Xiong Qingnan, et al. 2006. Doppler weather radar principle and business applications[M]. Beijing:China Meteorological Press, 11-12.<br/>俞小鼎, 姚秀萍, 熊廷南, 等. 2006.多普勒天气雷达原理与业务应用[M].北京:气象出版社, 11-12.
[19]Yu Xiaoding, Yao Xiuping, Xiong Qingnan, et al. 2006. Doppler weather radar principle and business applications[M]. Beijing:China Meteorological Press, 163-170.<br/>俞小鼎, 姚秀萍, 熊廷南, 等. 2006.多普勒天气雷达原理与业务应用[M].北京:气象出版社, 11-12.
[20]Zhang Zhiqiang, Liu Liping, Wang Hongyan, et al. 2008. Analysis on the consistency of intensity and positioning in four radars of North China[J]. Meteor Mon, 34(9):22-27.<br/>张志强, 刘黎平, 王红艳, 等. 2008.华北区域四部雷达探测强度与定位一致性分析[J].气象, 34(9):22-27.
文章导航

/