论文

ENSO循环对东亚地区平流层臭氧分布的影响

  • 汪明圣 ,
  • 郭世昌
展开
  • 云南大学大气科学系, 昆明 650091;广东省气候中心, 广州 510610

收稿日期: 2016-02-19

  网络出版日期: 2017-06-28

基金资助

国家自然科学基金(41275072)

Impact of the ENSO Cycle on the Stratospheric Ozone Distribution over East Asia

  • WANG Mingsheng ,
  • GUO Shichang
Expand
  • Department of Atmospheric Science, Yunnan University, Kunming 650091, China;Climate Center of Guangdong Province, Guangzhou 510610, China

Received date: 2016-02-19

  Online published: 2017-06-28

摘要

采用NOAA提供的ONI(Oceanic Niño Index)指数资料与欧洲中心提供的臭氧再分析资料,以滞后相关为切入点,分析了ENSO循环对东亚地区平流层臭氧分布的影响,探讨了ENSO不同位相(El Niño、La Niña)对臭氧场的强迫影响程度,并且用ENSO对剩余环流的影响解释了平流层臭氧变化的动力机制。结果表明:(1)ENSO对东亚地区平流层臭氧的分布有明显的影响,在平流层30 hPa和70 hPa尤为显著,且滞后8个月时二者相关达到最大;(2)El Niño发生8个月后中纬度地区平流层30 hPa的臭氧有所减少,而高纬度臭氧增加,70 hPa则与之相反,同时在低纬度地区70 hPa臭氧减少;La Niña反之;(3)Niño3.4区海温与滞后8个月臭氧的SVD分析结果也有类似的变化;(4)El Niño和La Niña的影响之间有显著的差异,在分别滞后于El Niño和La Niña事件8个月后平流层低层的臭氧含量差异可达-25%以上。(5)ENSO可以通过影响剩余环流的变化,进而影响臭氧分布发生以上的变化。

本文引用格式

汪明圣 , 郭世昌 . ENSO循环对东亚地区平流层臭氧分布的影响[J]. 高原气象, 2017 , 36(3) : 865 -874 . DOI: 10.7522/j.issn.1000-0534.2016.00068

Abstract

The Oceanic Niño Index (ONI) of the NOAA and ozone reanalysis data of ECMWF were used in this paper, the lag correlation method was used to analysis the influence of the ENSO circulation on the distribution of the stratospheric ozone over the East Asia. According to the composite analysis of the ozone anomaly percentage of El Niño and La Niña, the effect of the ENSO to the ozone force was investigated and the change can be explained by the residual circulation. The results show:(1) The effect of the ENSO to the stratospheric ozone was distinct over East Asia, which was more evident at 30 hPa, and 70 hPa than others, and that the correlation coefficient reached the maximum when lag equals 8 months. (2) After the El Niño occurred 8 months, at stratospheric 30 hPa, the ozone had a decrease over the mid-latitude region and an increase over the high latitude. At 70 hPa, the ozone had an increase over the mid-latitude, but a decrease over both high and low latitudes. However, the situation was contrary after La Niña. (3) The similar change has been obtained from the SVD analysis for the SST of Niño3.4 and the ozone 8 month later. (4) The difference of the effect of the El Niño and La Niña to the ozone was significant, and the difference of the ozone content could reach 25% when the El Niño and La Niña had occurred 8 months later. (5) ENSO can modulat the residual circulation, then it can influence the ozone distribution.

参考文献

[1]Alexander M A, Bladé I, Newman M, et al. 2002:The atmospheric bridge:The influence of ENSO teleconnections on air-sea interaction over the global oceans[J]. J Climate, 15(16):2205-2231.
[2]Andrews D G, Mcintyre M E. 1978. An exact theory of nonlinear waves on a Lagrangian-Mean flow[J]. Journal of Fluid Mechanics, 89(4):609-646.
[3]Baldwin M P, O'Sullivan D. 1995. Stratospheric effects of ENSO-related tropospheric circulation anomalies[J]. J Climate, 8(4):649-667.
[4]Chen Wen, Huang Ronghui. 2002. The propagation and transport effect of planetary waves in the Northern Hemisphere winter[J]. Adv Atmos Sci, 19:1113-1126.
[5]Dai A, Fung I Y, Del Genio A D. 1997. Surface observed global land precipitation variations during 1900-88[J]. J Climate, 10(11):2943-2962.
[6]Garcia-Herrera R, Calvo N, Garcia R R, et al. 2006. Propagation of ENSO temperature signals into the middle atmosphere:A comparison of two general circulation models ERA-40 reanalysis data[J]. Geophys Res, 111:D06101.
[7]Guo S, Wei D. 1988. Characteristics of the temporal-spatial variation in atmospheric ozonosphere over the northern hemisphere during the period of 1963-1985[J]. Adv Atmos Sci, 5(3):361-368.
[8]Han Z, Zhou L, Gao Y, et al. 2005. Total ozone variation between 50° and 60°N[J]. Geophys Res Lett, 32(23):L23812.
[9]Hoerling M P, Kumar A, Zhong M. 1997. El Ni?o, La Ni?a, and the Nonlinearity of Their Teleconnections[J]. J Climate, 10(10):1769-1786.
[10]Langford A O, Proffitt M H, Vanzt T E, et al. 1996. Modulation of tropospheric ozone by a propagating gravity wave[J]. J Geophys Res, 101613(27):605-626.
[11]McIntyre M E. 1980. Towards a Lagrangian-mean description of stratospheric circulations and chemical transports[J]. Philosophical Transactions of the Royal Society of London A:Mathematical, Physical and Engineering Sciences, 296(1418):129-148.
[12]Nzotungicimpaye C M, Abiodun B J, Steyn D G. 2014. Tropospheric ozone and its regional transport over Cape Town[J]. Atmos Environ, 87(5):228-238.
[13]Ou-Yang C F, Hsieh H C, Wang S H, et al. 2013. Influence of Asian continental outflow on the regional background ozone level in northern South China Sea[J]. Atmos Environ, 78(7):144-153.
[14]Petkov B H, Vitale V, Tomasi C, et al. 2014. Response of the ozone column over Europe to the 2011 Arctic ozone depletion event according to ground-based observations and assessment of the consequent variations in surface UV irradiance[J]. Atmos Environ, 85(85):169-178.
[15]Rasmusson E M, Carpenter T H. 1982. Variations in tropical sea surface temperature and surface wind fields associated with the southern Oscillation/El Ni?o[J]. Mon Wea Rev, 110(5):354-384.
[16]Sassi F, Kinnison D, Boville B A, et al. 2004. Effect of El Ni?o-Southern Oscillation on the dynamical, thermal, and chemical structure of the middle atmosphere[J]. J Geophysl Res, 109(D17):17108.
[17]Shiotani M. 1992. Annual, quasi-biennial, and El Ni?o-Southern Oscillation (ENSO) time-scale variations in equatorial total ozone[J]. J Geophys Res, 97(D7):7625-7633.
[18]Taguchi M, Hartmann D L. 2006. Increased occurrence of stratospheric sudden warmings during El Ni?o as simulated by WACCM[J]. J Climate, 19(3):324-332.
[19]Trenberth K E, Hoar T J. 1997. El Ni?o and climate change[J]. Geophys Res Lett, 24(23):3057-3060.
[20]Zeng G, Pyle J A. 2005. Influence of El Ni?o Southern Oscillation on stratosphere/troposphere exchange and the global tropospheric ozone budget[J]. Geophys Res Lett, 32(1):L01814.
[21]Zerefos C S, Bais A F, Ziomas I C, et al. 1992. On the relative importance of quasi-biennial oscillation and El Nin~o southern oscillation in the revised Dobson total ozone records[J]. J Geophys Res, 97(97):10135-10144.
[22]Zhou W, Chan J C L. 2007. ENSO and the South China Sea summer monsoon onset[J]. Int J Climatol, 27(2):157-167.
[23]Ziemke J R, Chandra S, Mcpeters R D, et al. 1997. Dynamical proxies of column ozone with applications to global trend models[J]. J Geophys Res, 102(D5):6117-6129.
[24]Chen Chuang, Tian Wenshou, Tian Hongying, et al. 2012. Vertical distribution of ozone and stratosphere-troposphere exchanges on the northeastern side of Tibetan Plateau[J]. Plateau Meteor, 31(2):295-303.<br/>陈闯, 田文寿, 田红瑛, 等. 2012.青藏高原东北侧臭氧垂直分布与平流层-对流层物质交换[J].高原气象, 31(2):295-303.
[25]Chen Quanliang, Chen Yuejuan. 2007. Stratospheric residual circulation and its temporal and spatial evolution[J]. Chinese J Atmos Sci, 31(1):136-144.<br/>陈权亮, 陈月娟. 2007.平流层剩余环流及其时间演变特征[J].大气科学, 31(1):137-144.
[26]Chen Yuejuan, Zhou Renjun, Jian Jun. 2002. The relationship between the summer monsoon circulation in East Asia and ENSO cycle[J]. Plateau Meteor, 21(6):536-545.<br/>陈月娟, 周任君, 简俊. 2002.东亚夏季风环流与ENSO循环的关系[J].高原气象, 21(6):536-545.
[27]Li Chongyin, Zhou Yaping. 1994. Relationship between intraseasonal oscillation in the tropioal atmosphere and enso[J]. Chinese J Geophys, 37(1):17-26.<br/>李崇银, 周亚萍. 1994.热带大气季节内振荡和ENSO的相互关系[J].地球物理学报, 37(1):17-26.
[28]Li Lin, Li Chongyin, Tan Yanke, et al. 2010. Stratospheric sudden warming impacts on the weather/climate in China and its role in the influences of ENSO[J]. Chinese J Geophys, 53(7):1529-1542.<br/>李琳, 李崇银, 谭言科, 等. 2010.平流层爆发性增温对中国天气气候的影响及其在ENSO影响中的作用[J].地球物理学报, 53(7):1529-1542.
[29]Li Minjiao, Zhang Xueqin, Xie Chengying. 2014. Cause analysis on typical abnormal year of water vapor in the upper troposphere over Qinghai-Xizang Plateau[J]. Plateau Meteor, 33(5):1197-1203. DOI:10. 7522/j. issn. 1000-0534. 2013. 00111.<br/>李敏姣, 张雪芹, 解承莹. 2014.青藏高原上对流层水汽"典型异常年"成因分析[J].高原气象, 33(5):1197-1203.
[30]Li Shubo, Wu Tongwen, Zhang Jie, et al. 2015. Simulation study about climatological basic state and seasonal variations of global O<sub>3</sub> in the 20th century[J]. Plateau Meteor, 34(6):1601-1615. DOI:10. 7522/j. issn. 1000-0534. 2014. 00119.<br/>李书博, 吴统文, 张洁, 等. 2015. BCC-AGCM-Chem0模式对20世纪全球O<sub>3</sub>气候平均态及季节变化特征的模拟研究[J].高原气象, 34(6):1601-1615.
[31]Li Yueqing, Li Chongyin, Huang Ronghui. 2003. SVD phase space analysis and its preliminary application to sea-air coupling relationship[J]. Plateau Meteor, 22(Suppl):17-23.<br/>李跃清, 李崇银, 黄荣. 2003. SVD相空间分析方法及其在海气耦合关系中的初步应用[J].高原气象, 22(增刊):17-23.
[32]Wang Guiqin. 1990. A brief introduction to atmospheric ozone layer[M]. Beijing:China Meteorological Press, 178-235.<br/>王贵勤. 1990.大气臭氧层研究简介[M].北京:气象出版社, 178-235.
[33]Xu Wucheng, Wang Wen, Ma Jingsong, et al. 2009. ENSO events during 19512007 and their characteristic indices[J]. J Natural Disasters, 18(4):18-24.<br/>许武成, 王文, 马劲松, 等. 2009. 19512007年的ENSO事件及其特征值[J].自然灾害学报, 18(4):18-24.
[34]Yang Liquan, Qiu Jinghuan, Zhao Yanliang. 1998. Effects of volcanic aerosol on ozone change trends over Beijing[J]. Chinese J Atmos Sci, 22(5):686-692.<br/>杨理权, 邱金恒, 赵延亮. 1998.火山气溶胶对北京地区臭氧总量变化趋势的影响[J].大气科学, 22(5):11-17.
[35]Zhang Fang, Wu Tongwen, Zhang Jie, et al. 2016. Variations of tropospheric ozone in the 20th century simulated by BCC-AGCM-Chem0 Model[J]. Plateau Meteor, 35(1):158-171. DOI:10. 7522/j. issn. 1000-0534. 2014. 00118.<br/>张芳, 吴统文, 张洁, 等. 2016. BCC-AGCM-Chem0模式对20世纪对流层臭氧变化趋势的模拟研究[J].高原气象, 35(1):158-171.
[36]Zhou Renjun, Cai Hongke, Yi Mingjian, et al. 2011. The impact of the ENSO cycle on the stratospheric aerosol distribution[J]. Chinese J Geophys, 54(11):2726-2734.<br/>周任君, 蔡宏珂, 易明建, 等. 2011. ENSO对平流层气溶胶分布的影响[J].地球物理学报, 54(11):2726-2734.
[37]Zou Han, Gao Yongqi. 1997. QBO and ENSO signals in total ozone over 60~70°S[J]. Climatic and Environmental Research, 2(1):61-70.<br/>邹捍, 郜永祺. 1997. 60~70°S臭氧总量的QBO和ENSO信号[J].气候与环境研究, 2(1):61-70.
[38]Zou Han, Ji Chongping, Zhou Libo, et al. 2001. ENSO signal in total ozone over Tibet[J]. Climatic and Environmental Research, 6(3):267-272.<br/>邹捍, 季崇萍, 周立波, 等. 2001.青藏高原臭氧的ENSO[J].气候与环境研究, 6(3):267-272.
文章导航

/