论文

青藏高原中部聂荣亚寒带半干旱草地近地层湍流特征研究

  • 杨丽薇 ,
  • 高晓清 ,
  • 惠小英 ,
  • 高娜 ,
  • 周亚 ,
  • 侯旭宏
展开
  • 中国科学院寒旱区陆面过程与气候变化重点实验室/中国科学院西北生态环境资源研究院, 兰州 730000;中国科学院大学, 北京 100049

收稿日期: 2016-01-18

  网络出版日期: 2017-08-28

基金资助

国家自然科学基金项目(91437108);科技部公益性行业(气象)科研专项(GYHY201406001)

Study on Turbulence Characteristics in the Atmospheric Surface Layer over Nyainrong Grassland in Central Qinghai-Tibetan Plateau

  • YANG Liwei ,
  • GAO Xiaoqing ,
  • HUI Xiaoying ,
  • GAO Na ,
  • ZHOU Ya ,
  • HOU Xuhong
Expand
  • Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2016-01-18

  Online published: 2017-08-28

摘要

湍流运动是大气最基本的运动特征,是地气间能量物质交换的主要方式。利用2014年7月18日至8月31日青藏高原中部聂荣观测站的近地层湍流观测资料,分析了该地区近地层湍流统计特征以及近地层通量的日变化特征。结果表明:在不稳定和稳定层结下,风速分量归一化标准差σu/u*σv/u*σw/u*与稳定度参数z/L满足相似理论的“1/3”定律,近中性条件下趋于常数,并表现为σu/u*σv/u* >σw/u*;在不稳定层结下,温度、水汽密度和CO2浓度归一化标准差σT/|T*|、σq/|q*|和σC/|C*|与|z/L|满足“-1/3”定律,在近中性层结下趋于常数,且明显大于青藏高原其他地区。湍流在风速0 m·s-1 < U < 3 m·s-1的环境中发展最为旺盛,垂直风分量的湍流强度较水平风分量更为集中,三个方向的湍流强度基本表现为Iu≈Iv > Iw。夏季潜热通量大于感热通量,CO2通量的日变化以吸收为主,最强达到0.46 mg·m-2·s-1

本文引用格式

杨丽薇 , 高晓清 , 惠小英 , 高娜 , 周亚 , 侯旭宏 . 青藏高原中部聂荣亚寒带半干旱草地近地层湍流特征研究[J]. 高原气象, 2017 , 36(4) : 875 -885 . DOI: 10.7522/j.issn.1000-0534.2016.00089

Abstract

Turbulence is the basic characteristic of atmospheric motion and main way of matter and energy exchange between land and air. Based on the turbulence data observed at Nyainrong station, central part of Qinghai-Tibetan Plateau, from 18 July to 31 August 2014, the variation of turbulent statistical parameters and the energy exchange near surface layer were analyzed. The results show that the relationship between the normalized standard deviation of wind velocity components σu/u*, σv/u*, σw/u* and stability parameter z/L satisfies the "1/3" power law in stable/unstable stratifications. Under the near-neutral stratification condition, normalized standard deviations are approximately constant, and σu/u*σv/u* >σw/u*. The relationship between the normalized standard deviations of temperature, humidity and CO2 concentration σT/|T*|, σq/|q*|, σC/|C*|and stability parameter|z/L|satisfies the "-1/3" power law under unstable conditions. Under the near-neutral condition, normalized standard deviations are approximately constant, they are significantly greater than those in other regions of the Qinghai-Tibetan Plateau. When the wind speed is 0 m·s-1 < U < 3 m·s-1, the development of turbulence is much vigorous. The performance of the turbulence intensity in the three directions is Iu≈Iv > Iw. The diurnal variations of surface fluxes are evident, and latent heat flux is larger than the sensible heat flux in the summer.

参考文献

[1]Andreas E, Hill R J, Gosz J R, et al. 1998. Statistics of surface layer turbulence over terrain with metre-scale heterogeneity[J]. Bound-Layer Meteor, 86(3):379-408.
[2]Arya S P S, Sundararajan A. 1976. An assessment of proposed similarity theories for the atmospheric boundary layer[J]. Bound-Layer Meteor, 10(10):149-166.
[3]Bao J, Zhang L, Cao X J, et al. 2012. Footprintanalysis for turbulent flux measurements over complex terrain on the Loess Plateau of China[J]. Advanced Materials Research, 516-517:910-916. DOI:10.4028/www.scientific.net/AMR.516-517.910.
[4]Choi T, Hong J, Kim J, et al. 2004. Turbulent exchange of heat, water vapor, and momentum over a Tibetan prairie by eddy covariance and flux variance measurements[J]. J Geophys Res Atmos, 109(D21):2161-2170.
[5]Cvitan L. 2006. Classification of the stratified atmospheric boundary layers at Molve (Croatia) based on the similarity theory[J]. Meteor Atmos Phys, 93(3/4):235-246.
[6]Gao Z, Bian L, Chen Z, et al. 2006. Turbulentvariance characteristics of temperature and humidity over a non-uniform land surface for an agricultural ecosystem in China[J]. Adv Atmos Sci, 23(3):365-374.
[7]Hsieh C I, Lai M C, Hsia Y J, et al. 2008. Estimation of sensible heat, water vapor, and CO<sub>2</sub> fluxes using the flux-variance method[J]. Int J Biometeor, 52(6):521-533.
[8]Kolmogorov A N. 1941. The local structure of turbulence in an incompressible fluid at very high reynolds number[J]. Soviet Physics Uspekhi, 30(2):301-305.
[9]Mahrt L. 1998. Nocturnal Boundary-Layer Regimes[J]. Bound-Layer Meteor, 88(2):255-278.
[10]Niu S, Zhao L, Lu C, et al. 2012. Observational evidence for the Monin-Obukhov similarity under all stability conditions[J]. Adv Atmos Sci, 29:285-294.
[11]Panofsky H A, Teanekes H, Lenschow D H, et al. 1977. The characteristics of turbulent velocity components in the surface layer under convective conditions[J]. Bound-Layer Meteor, 11(3):355-361.
[12]Quan L, Hu F. 2009. Relationship between turbulent flux and variance in the urban canopy[J]. Meteor Atmos Phys, 104 (1/2):29-36.
[13]Wang S Y, Zhang Y, Lü S H, et al. 2013. Estimation of turbulent fluxes using the flux-variance method over an alpine meadow surface in the eastern Tibetan Plateau[J]. Adv Atmos Sci, 30(2):411-424. DOI:10.1007/s00376-012-2056-1.
[14]Zhao Songnian, Hu Fei. 2015. Turbulence question:How do view "the homogenous and isotropic turbulence"?[J]. Scientia Sinica, 45(2):24701-024701. DOI:10.1360/SSPMA2014-00362.
[15]Zhou D, Huang R. 2011. Characterization of turbulent flux transfer over a Gobi surface with quality-controlled observations[J]. Science China:Earth Sciences, 54(5):753-763.
[16]Zhou H. 2012. What is the essence of the so-called century lasting difficult problem in classic physics, the "problem of turbulence"[J]. Scientia Sinica Physica Mechanica &amp; Astronomica, 42(1):1-5.
[17]Bian Lingen, Lu Longhua, Cheng Yanjie, et al. 2001. Turbulent measurement over the southeastern Tibetan Plateau[J]. J Appl Meteor Sci, 12(1):1-13.<br/>卞林根, 陆龙骅, 程彦杰, 等. 2001.青藏高原东南部昌都地区近地层湍流输送的观测研究[J].应用气象学报, 12(1):1-13.
[18]Chen Hongyan, Chen Jiayi, Hu Fei, et al. 2001. The Turbulent Transfer in Atmospheric Surface Layer in HUBEX[J]. Climatic Environ Res, 6(2):221-227.<br/>陈红岩, 陈家宜, 胡非, 等. 2001. HUBEX试验区近地面层的湍流输送[J].气候与环境研究, 6(2):221-227.
[19]Chen Jinbei, Hu Yinqiao, Lü Shihua, et al. 2014. Influence of advection on the characteristics of turbulence over uneven surface in the oasis and the Gobi Desert[J]. Science China:Earth Sciences, 44(11):2499-2514.<br/>陈晋北, 胡隐樵, 吕世华, 等. 2014.绿洲和戈壁复杂下垫面平流对湍流特征的影响[J].中国科学:地球科学, 44(11):2499-2514.
[20]Chen Yungang, Zhang Yu, Wang Shaoying, et al. 2014. Seasonal variation of turbulence characteristics over alpine meadow ecosystem[J]. Plateau Meteor, 33(3):585-595. DOI:10.7522/j.issn.1000-0534.2014.00044.<br/>陈云刚, 张宇, 王少影, 等. 2014.高寒草甸湍流特征量的季节变化特征[J].高原气象, 33(3):585-595.
[21]Li Jialun, Hong Zhongxiang, Luo Weidong, et al. 1999. A study of surface fluxes in Gerze Area, Qinghai-Xizang Plateau[J]. Chinese J Atmos Sci, 23(2):142-151.<br/>李家伦, 洪钟祥, 罗卫东, 等. 1999.青藏高原改则地区近地层通量观测研究[J].大气科学, 23(2):142-151.
[22]Li Maoshan, Hu Zeyong, Ma Weiqiang, et al. 2010. The turbulent features in the upper reaches of Heihe River[J]. Journal of Glaciology and Geocrylolgy, 32(2):309-315.<br/>李茂善, 胡泽勇, 马伟强, 等. 2010.黑河流域上游大气湍流特征分析[J].冰川冻土, 32(2):309-315.
[23]Li Ying, Li Yueqing, Zhao Xingbing. 2008. The comparison and analysis of ABL observational data on the east edge of Tibetan Plateau and in Chengdu PlainⅡ-Characteristics of turbulence in the surface layer[J]. Plateau Mountain Meteor Res, 28(1):30-35.<br/>李英, 李跃清, 赵兴炳. 2008.青藏高原东部与成都平原大气边界层对比分析Ⅱ——近地层湍流特征[J].高原山地气象研究, 28(1):30-35.
[24]Li Ying, Li Yueqing, Zhao Xingbing. 2009. Analysis of turbulent characteristics in the surface layer in Litang Region on the east edge of Tibetan Plateau[J]. Plateau Meteor, 28(4):745-753.<br/>李英, 李跃清, 赵兴炳. 2009.青藏高原东坡理塘地区近地层湍流特征研究[J].高原气象, 28(4):745-753.
[25]Liu Heng, Jiang Weimei. 1998. Analysis on turbulent characteristics in the atmospheric surface layer and some exploring in the applications of diffusion modeling[J]. Plateau Meteor, 17(4):390-396.<br/>刘衡, 蒋维楣. 1998.近地层湍流特征及其在扩散模拟中的应用[J].高原气象, 17(4):390-396.
[26]Liu Huizhi, Feng Jianwu, Wang Lei, et al. 2013. Overview of recent studies on atmospheric boundary layer physics at LAPC[J]. Chinese J Atmos Sci, 37(2):467-476.<br/>刘辉志, 冯健武, 王雷, 等. 2013.大气边界层物理研究进展[J].大气科学, 37(2):467-476.
[27]刘辉志, 冯健武, 邹捍, 等. 2007.青藏高原珠峰绒布河谷地区近地层湍流输送特征[J].高原气象, 26(6):1151-1161.
[28]Liu Huizhi, Hong Zhongxiang. 2000. Turbulent characteristics in the surface layer over Gerze Area in the Tibetan Plateau[J]. Chinese J Atmos Sci, 24(3):289-300.<br/>刘辉志, 洪忠祥. 2000.青藏高原改则地区近地层湍流特征[J].大气科学, 24(3):289-300.
[29]Liu Huizhi, Hong Zhongxiang, Zhang Hongsheng, et al. 2003. The turbulent characteristics in the surface layer over dune at Naiman in Inner Mongolia[J]. Chinese J Atmos Sci, 27(3):389-398.<br/>刘辉志, 洪钟祥, 张宏升, 等. 2003.内蒙古奈曼流动沙丘下垫面湍流输送特征初步研究[J].大气科学, 27(3):389-398.
[30]Liu Huolin, Hu Zeyong, Yang Yaoxian, et al. 2015. Simulation of the freezing-thawing processes at Nagqu area over Qinghai-Xizang Plateau[J]. Plateau Meteor, 34(3):676-683. DOI:10.7522/j.issn.1000-0534.2015.00021.<br/>刘火霖, 胡泽勇, 杨耀先, 等. 2015.青藏高原那曲地区冻融过程的数值模拟研究[J].高原气象, 34(3):676-683.
[31]Ma Yaoming, Ma Weiqiang, Hu Zeyong, et al. 2002. Similarity analysis of atmospheric turbulent intensity over grassland surface of Qinghai-Xizang Plateau[J]. Plateau Meteor, 21(5):514-517.<br/>马耀明, 马伟强, 胡泽勇, 等. 2002.青藏高原草甸下垫面湍流强度相似性关系分析[J].高原气象, 21(5):514-517.
[32]Mao Fei, Lu Zhiguang, Zhang Jiahua, et al. 2007. Analysis on climate characteristics in Naqu in recent 40 years[J]. Plateau Meteor, 26(4):708-715.<br/>毛飞, 卢志光, 张佳华, 等. 2007.近40年那曲地区气候特征分析[J].高原气象, 26(4):708-715.
[33]Qi Yongqiang, Wang Jiemin, Jia Li, et al. 1996. A study of turbulent transfer characteristics in Wudaoliang area of Qinghai-Xizang Plateau[J]. Plateau Meteor, 15(2):172-177.<br/>祁永强, 王介民, 贾立, 等. 1996.青藏高原五道梁地区湍流输送特征的研究[J].高原气象, 15(2):172-177.
[34]Shang Lunyu, Lü Shihua, Zhang Yu, et al. 2011. Analysis on atmospheric surface layer turbulence characteristic during soil freezing and thawing season in eastern Qinghai-Xizang Plateau[J]. Plateau Meteor, 30(1):30-37.<br/>尚伦宇, 吕世华, 张宇, 等. 2011.青藏高原东部土壤冻融过程中近地层湍流统计特征分析[J].高原气象, 30(1):30-37.
[35]Sun Genhou, Hu Zeyong, Wang Jiemin, et al. 2016. Comparison analysis of sensible heat fluxes at two spatial scales in Nagqu area[J]. Plateau Meteor, 35(2):285-296. DOI:10.7522/j.issn.1000-0534.2015.00088.<br/>孙根厚, 胡泽勇, 王介民, 等. 2016.那曲地区两种空间尺度感热通量的对比分析[J].高原气象, 35(2):285-296.
[36]Wang Jiemin, Liu Xiaohu, Ma Yaoming. 1993. Turbulence structure and transfer characteristics in the surface layer of HEIFE Gobi area[J]. Acta Meteor Sinica, 51(3):343-350.<br/>王介民, 刘哓虎, 马耀明. 1993. HEIFE戈壁地区近地层大气的湍流结构和输送特征[J].气象学报, 51(3):343-350.
[37]Wang YinJun, Xu Xiangde, Zhao Tianliang, et al. 2015. Structures of convection and turbulent kinetic energy in boundary layer over the southeastern edge of the Tibetan Plateau[J]. Science China:Earth Sciences, 45(6):843-855.<br/>王寅钧, 徐祥德, 赵天良, 等. 2015.青藏高原东南缘边界层对流与湍能结构特征[J].中国科学:地球科学, 45(6):843-855.
[38]Wang Yinjun. 2014. Boundary layer characteristics and turbulent parameterization in southeastern side of Tibetan Plateau[D]. Beijing:Chinese Academy of Meteorological Sciences, 1-98.<br/>王寅钧. 2014. 青藏高原东南缘大理边界层参数化与湍流特征影响研究[D]. 北京: 中国气象科学研究院, 1-98.
[39]Wu Hao, Ye Baisheng, Wu Jinkui, et al. 2013. Analysis on turbulent feature of apline meadow in the upper reach of Shule River[J]. Plateau Meteor, 32(2):2368-2376. DOI:10.7522/j.issn.1000-0534.2013.00036.<br/>吴灏, 叶柏生, 吴锦奎, 等. 2013.疏勒河上游高寒草甸下垫面湍流特征分析[J].高原气象, 32(2):2368-2376.
[40]Yang Zhi, Liu Jingsong, Zhu Yiwei, et al. 2010. Analyses of turbulence characteristics in the surface layer at Dali of the western Yunnan-Guizhou Plateau[J]. Trans Atmos Sci, 33(1):117-124. DOI:10.13878/j.cnki.dqkxxb.2010.01.006.<br/>杨智, 刘劲松, 朱以维, 等. 2010.云贵高原西部大理地区近地层湍流特征分析[J].大气科学学报, 33(1):117-124.
[41]Zhang Hongsheng, 2014. Introduction to atmospheric turbulence[M]. Beijing:Peking University Press, 1-8.<br/>张宏昇, 2014.大气湍流基础[M].北京:北京大学出版社, 1-8.
[42]Zhang Hongsheng, Li Fuyu, Chen Jiayi. 2004. Statistical characteristics of atmospheric turbulence in different underlying surface conditions[J]. Plateau Meteor, 23(5):598-604.<br/>张宏升, 李富余, 陈家宜. 2004.不同下垫面湍流统计特征研究[J].高原气象, 23(5):598-604.
[43]Zhang Qiang, Hu Yinqiao. 2001. Scientific problems and advance of atmospheric boundary layer physics[J]. Adv Earth Sci, 16(4):526-532.<br/>张强, 胡隐樵. 2001.大气边界层物理学的研究进展和面临的科学问题[J].地球科学进展, 16(4):526-532.
[44]Zhang Qiang. 2003. Review of atmospheric boundary layer meteorology[J]. Arid Meteor, 21(3):74-78.<br/>张强. 2003.大气边界层气象学研究综述[J].干旱气象, 21(3):74-78.
[45]Zhong Lei, Ma Yaoming, Li Maoshan. 2007. An analysis of atmosphere turbulence and energy transfer characteristics of surface layer over Rongbu Valley in Mt. Qomolangma area[J]. Chinese J Atmos Sci, 31(1):48-56.<br/>仲雷, 马耀明, 李茂善. 2007.珠穆朗玛峰绒布河谷近地层大气湍流及能量输送特征分析[J].大气科学, 31(1):48-56.
[46]Zhu Zhikun, Ma Yaoming, Hu Zeyong, et al. 2015. Net ecosystem carbon dioxide exchange in alpine meadow of Nagchu region over Qinghai-Xizang Plateau[J]. Plateau Meteor, 34(5):1217-1233. DOI:10.7522/j.issn.1000-0534.2014.00135.<br/>朱志鹍, 马耀明, 胡泽勇, 等. 2015.青藏高原那曲高寒草甸生态系统CO<sub>2</sub>净交换及其影响因子[J].高原气象, 34(5):1217-1233.
文章导航

/