论文

影响长江中下游夏季降水的青藏高原水汽抽吸作用和水汽路径的定量化研究

  • 敬文琪 ,
  • 崔园园 ,
  • 刘瑞霞 ,
  • 王业桂 ,
  • 方涵先 ,
  • 赵小艳 ,
  • 马杰
展开
  • 国防科技大学气象海洋学院, 南京 211101;南京信息工程大学大气科学学院, 南京 210044;中国气象局 中国遥感卫星辐射测量和定标重点开放实验室/国家卫星气象中心, 北京 100081;中国科学院大气物理研究所, 北京 100029;南京信息工程大学应用气象学院, 南京 210044

收稿日期: 2016-05-06

  网络出版日期: 2017-08-28

基金资助

国家自然科学基金项目(41375025,41130960);公益性行业(气象)科研专项(GYHY201406001)

Quantitative Study on Water Vapor Pumping over Qinghai-Tibetan Plateau and Water Vapor Paths Influencing Summer Precipitation in the Middle and Lower Reach of the Yangtze River

  • JING Wenqi ,
  • CUI Yuanyuan ,
  • LIU Ruixia ,
  • WANG Yegui ,
  • FANG Hanxian ,
  • ZHAO Xiaoyan ,
  • MA Jie
Expand
  • College of Meteorology and Oceanography, National University of Defense Technology, Nanjing 211101, China;School of Atmospheric Science, Nanjing University of Information Science and Technology, Nanjing 210044, China;Key Laboratory of Radiometric Calibration and Validation for Environmental Satellite National Satellite Meteorological Center, China Meteorological Administration, Beijing 100081, China;Institute of Atmospheric Physics, Chinese Academy of Science, Beijing 100029, China;School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China

Received date: 2016-05-06

  Online published: 2017-08-28

摘要

基于2008年夏季JICA高原探空资料、1979-2015年ERA-Interim和MERRA再分析资料和中国160站点降水资料,首先评估了两种再分析资料在青藏高原(下称高原)的适用性;其次,提出将高原高低层水汽通量散度差定义为高原水汽抽吸指数;然后,采用合成分析法定义了与长江中下游(MLRYR)夏季降水关系密切的水汽路径有5条:孟加拉湾路径、云贵路径、南海路径、低纬路径和汇合路径,并对其强度进行了定量计算。研究表明:ERA-Interim相对MERRA再分析资料在高原适用性更优。在年际变化上,5条水汽路径与MLRYR夏季降水呈同相位变化。5条路径之间关联密切,构成了两条影响MLRYR降水的反气旋式水汽输送相关链:“南海-孟加拉湾-高原南缘-云贵-MLRYR”和“南海-华南-MLRYR”。南海水汽路径是中国东部地区降水重要的水汽通道;汇合路径是调控MLRYR夏季降水的重要水汽输入通道,而云贵东向路径与整个长江流域的降水呈显著正相关。影响MLRYR夏季降水的高原水汽抽吸作用主要发生在高原南缘。高原水汽抽吸作用可以将低层的水汽抽吸至高层,通过增加长江流域西入的纬向水汽输送间接影响到长江流域的降水。

本文引用格式

敬文琪 , 崔园园 , 刘瑞霞 , 王业桂 , 方涵先 , 赵小艳 , 马杰 . 影响长江中下游夏季降水的青藏高原水汽抽吸作用和水汽路径的定量化研究[J]. 高原气象, 2017 , 36(4) : 900 -911 . DOI: 10.7522/j.issn.1000-0534.2016.00084

Abstract

Based on JICA Tibetan sounding data in 2008, ERA-Interim and MERRA reanalysis data during 1979-2015 and monthly average precipitation of 160 stations in China, firstly this study evaluates the applicability of two reanalysis data on Qinghai-Tibetan Plateau (QTP) and defines the high-level and low-level difference of water vapor flux divergence on QTP as QTP water vapor pumping index; By synthetic analysis, it is found that there are mainly five water vapor paths influencing summer precipitation in middle and lower reach of Yangtze River (MLRYR):The Bay of Bengal path, Yunnan-Guizhou Plateau path, South China Sea path, low latitude path and confluent water vapor path, whose magnitude is calculated by index. The result shows that ERA-Interim reanalysis data shows better applicability than MERRA reanalysis data on QTP. On the inter-annual variability, all the water vapor paths perform the same phase change with MLRYR summer rainfall. Five paths are closely related, making up two anticyclonic water vapor transport correlation-chains:One is "South China Sea-the Bay of Bengal-southern edge of QTP-Yunnan-GuiZhou Plateau-MLRYR", the other is "South China Sea-Yunnan-Guizhou Plateau-MLRYR". South China Sea path is important water vapor channel of the rainfall in east China; Confluent path is the vital water vapor channel controlling the summer rainfall in MLRYR, but Yunnan-Guizhou Plateau path shows significant correlation with the summer rainfall in whole reach of Yangtze River. QTP water vapor pumping, which effects summer rainfall in MLRYR, mainly occurs over southern edge of QTP. QTP water vapor pumping can pump up water vapor in lower level to the top of QTP, and plays an indirect role in influencing the summer rainfall in Yangtze River by increasing zonal water vapor transport towards the Yangtze River Basin.

参考文献

[1]Bai J, Xu X. 2004. Atmospheric hydrological budget with its effects over Tibetan Plateau[J]. J Geogr Sci, 14(1):81-86.
[2]Durán-Quesada A M, Gimeno L, Amador J A, et al. 2010. Moisture Sources for Central America:Identification of moisture sources using a lagrangian analysis technique[J]. J Geophys Res, 115:D05103. DOI:10.1029/2009JD012455.
[3]Zhang R H. 2001. Relations of water vapor transport from indian monsoon with that over East Asia and the summer rainfall in China[J]. Adv Atmos Sci, 18(5):1005-1017.
[4]Seiler R A, Hayes M, Bressan L. 2002. Using the standardized precipitation index for flood risk monitoring[J]. Int J Climatol, 22(11):1365-1376.
[5]Simmonds I, Bi D, Hope P. 1999. Atmospheric water vapor flux and its association with rainfall over China in summer[J]. J Climate, 12(5):1353-1367.
[6]Ting M, Wang H. 1997. Summertime US precipitation variability and its relation to pacific sea surface temperature[J]. J Climate, 10(8):1853-1873.
[7]Xu X D, Shi X Y, Wang Y Q, et al. 2008. Data analysis and numerical simulation of moisture source and transport associated with summer precipitation in the Yangtze River Valley over China[J]. Meteor Atmos Phys, 100(1-4):217-231.
[8]Xu X, Lu C, Shi X, et al. 2008. World water tower:An atmospheric perspective[J]. Geophys Res Lett, 35:L20815. DOI:10.1029/2008GL035867.
[9]Xu X, Zhao T, Lu C, et al. 2014. An important mechanism sustaining the atmospheric" water tower" over the Tibetan Plateau[J]. Atmos Chem Phys, 2014, 14(20):11287-11295.
[10]Ao Ting, Li Yueqing. 2015. Summer thermal characteristics over Qinghai-Xizang Plateau and surrounding areas and its relationship with precipitation in East Asia[J]. Plateau Meteor, 34(5):1204-1216. DOI:10.7522/j.issn.1000-0534.2014.00100.<br/>敖婷, 李跃清. 2015.夏季青藏高原及周边热力特征与东亚降水的区域关系[J].高原气象, 34(5):1204-1216.
[11]Jiang Xingwen, Li Yueqing, Wang Xin. 2008. Water vapor transportation over China and its relationship with drought and flood in the Yangtze River Basin[J]. Acta Geograph Sinica, 63(5):482-490.<br/>蒋兴文, 李跃清, 王鑫. 2008.中国地区水汽输送异常特征及其与长江流域旱涝的关系[J].地理学报, 63(5):482-490.
[12]Kong Haisheng, Wu Sheng'an. 2012. Identification of floods and droughts years over Huaihe River Basin and over the middle and lower reaches of the Yangtze River Basin[J]. Yellow River, 34(3):30-35.<br/>孔海江, 吴胜安. 2012.淮河流域与和长江中下流域旱涝年的划分[J].人民黄河, 34(3):30-35.
[13]Li Minjiao, Zhang Xueqin, Xie Chengying. 2014. Cause analysis on typical abnormal year of water vapor in the upper troposphere over Qinghai-Xizang Plateau[J]. Plateau Meteor, 33(5):1197-1203. DOI:10.7522/j.issn.1000-0534.2013.00111.<br/>李敏姣, 张雪芹, 解承莹. 2014.青藏高原上对流层水汽"典型异常年"成因分析[J].高原气象, 33(5):1197-1203.
[14]Li Ruiqing, Lü Shihua, Han Bo, et al. 2012. Preliminary comparison and analyses of air temperature at 2 m height between three reanalysis data-sets and observation in the East of Qinghai-Xiang Plateau[J]. Plateau Meteor, 31(6):1488-1502.<br/>李瑞青, 吕世华, 韩博, 等. 2012.青藏高原东部三种再分析资料与地面气温观测资料的对比分析[J].高原气象, 31(6):1488-1502.
[15]Liu Ruixia, Xu Xiangde, Liu Yujie. 2013. Application of JICA comprehen-sive observation and satellite data in three-dimensional cloud and humidity construction over Qinghai-Xizang Plateau[J]. Plateau Meteor, 32(6):1589-1596. DOI:10.7522/j.issn.1000-0534.2012.00154.<br/>刘瑞霞, 徐祥德, 刘玉洁. 2013. JICA综合观测与卫星数据在高原地区三维云和水汽场构建中的应用[J].高原气象, 2013, 32(6):1589-1596.
[16]Miao Qiuju, Xu Xiangde, Zhang Shengjun. 2005. Whole layer water vapor budget of Yangtze River Valley and moisture flux components transform in the key areas of the Plateau[J]. Acta Meteor Sinica, 63(1):93-99.<br/>苗秋菊, 徐祥德, 张胜军. 2005.长江流域水汽收支与高原水汽输送分量"转换"特征[J].气象学报, 63(1):93-99.
[17]Shi Xiaohui, Wen Min. 2015. Distribution and variation of persistent heavy rainfall event in China and possible impacts of heating source anomaly over Qinghai-Xizang Plateau[J]. Plateau Meteor, 34(3):611-620. DOI:10.7522/j.issn.1000-0534.2014.00039.<br/>施晓晖, 温敏. 2015.中国持续性暴雨特征及青藏高原热源的影响[J].高原气象, 34(3):611-620.
[18]Shi Xiaoying. 2008. Characteristics of moisture transport structure in mid-lower latitude key region and its impact on anomalies of summer precipitation in Yangtze River Valley[D]. Beijing:Graduate University of Chinese Academy of Sciences, 1-172.<br/>施小英. 2008. 中低纬关键区水汽输送结构特征及其对长江流域夏季降水异常的影响[D]. 北京: 中国科学院研究生院, 1-172.
[19]Sun Yuting, Gao Qingjiu, Min Jinzhong. 2013. Comparison of reanalysis data and observation about summer/winter surface air temperature in Tibet[J]. Plateau Meteor, 32(4):909-920. DOI:10.7522/j.issn.1000-0534.2012.00087.<br/>孙玉婷, 高庆九, 闵锦忠. 2013.再分析温度资料与西藏地区冬、夏季观测气温的比较[J].高原气象, 32(4):909-920.
[20]Tian Hongying, Tian Wenshou, Lou Jiali, et al. 2013. Characteristics of water vapor distribution and variation in upper troposphere and lower stratosphere over Qinghai-Xizang Plateau[J]. Plateau Meteor, 32(1):1-13. DOI:10.7522/j.issn.1000-0534.2013.00074.<br/>田红瑛, 田文寿, 雒佳丽, 等. 2013.青藏高原地区上对流层-下平流层区域水汽分布和变化特征[J].高原气象, 32(1):1-13.
[21]Wang Bin. 2011. Comparision between NCEP and NASA reanalysis data in Qinghai-Tibetan Plateau area and activities of south Asia high and its influence on drought and flood anomaly of China in summer[D]. Beijing:Chinese Academy of Meteorological Sciences, 1-84.<br/>王斌. 2011. 高原地区NASA与NCEP再分析资料对比和南亚高压活动及其旱涝影响分析[D]. 北京: 中国气象科学研究院, 1-84.
[22]Xie An, Mao Jiangyu, Song Yanyun, et al. 2002. Climatological characteristics of moisture transport over Yangtze River Basin[J]. J Appl Meteor Sci, 13(1):67-77.<br/>谢安, 毛江玉, 宋焱云, 等. 2002.长江中下游地区水汽输送的气候特征[J].应用气象学报, 13(1):67-77.
[23]Xie Chengying, Li Minjiao, Zhang Xueqin, et al. 2015. Moisture transport features in summer and its rainfall effects over key region in Southern Margin of Qinghai-Xizang Plateau[J]. Plateau Meteor, 34(2):327-337. DOI:10.7522/j.issn.1000-0534.2014.00034.<br/>解承莹, 李敏姣, 张雪芹, 等. 2015.青藏高原南缘关键区夏季水汽输送特征及其与高原降水的关系[J].高原气象, 34(2):327-337.
[24]Xu Jianyu, Wang Huijuan, Li Hongyi. 2014. Preliminary simulation analysis of moisture budget over Qinghai-Xizang plateau in aummer[J]. Plateau Meteor, 33(5):1173-1181. DOI:10.7522/j.issn.1000-0534.2013.00117.<br/>许建玉, 王慧娟, 李宏毅. 2014.夏季青藏高原地区水汽收支的初步模拟分析[J].高原气象, 33(5):1173-1181.
[25]Xu Xiangde, Chen Lianshou, Wang Xiurong, et al. 2003. The sink and source structure of water vapor transport for Meiyu in Yangtze River Basin[J]. Chinese Sci Bull, 48(21):2288-2294.<br/>徐祥德, 陈联寿, 王秀荣, 等. 2003.长江流域梅雨带水汽输送源-汇结构[J].科学通报, 48(21):2288-2294.
[26]Xu Xiangde, Tao Shiyan, Wang Jizhi, et al. 2002. The relation-ship between water vapor transport features of Tibetan Plateau-Monsoon "large triangle" affecting region and drought-flood abnormality of China[J]. Acta Meteor Sinica, 60(3):257-266.<br/>徐祥德, 陶诗言, 王继志, 等. 2002.青藏高原-季风水汽输送"大三角扇型"影响域特征与中国区域旱涝异常的关系[J].气象学报, 60(3):257-266.
[27]Xu Xiangde, Zhao Tianliang, Lu Chungu, et al. 2014. Characteristics of the water cycle in the atmosphere over the Tibetan Plateau[J]. Acta Meteor Sinica, 72(6):1079-1095.<br/>徐祥德, 赵天良, Lu Chungu, 等.青藏高原大气水分循环特征[J].气象学报, 2014, 72(6):1079-1095.
[28]Ye Ming, Feng Guolin. 2015. Objective quantification of moisture transport that influences summer rainfall in the middle and lower reaches of the Yangtze River[J]. Chinese J Atmos Sci, 39(4):777-788.<br/>叶敏, 封国林. 2015.长江中下游地区夏季降水的水汽路径的客观定量化研究[J].大气科学, 39(4):777-788.
[29]Ye Min, Wu Yongping, Zhou Jie, et al. 2014. Objective quantification of the water vapor path influencing precipitation in North China in summer[J]. Acta Phys Sin, 63(12):129201.<br/>叶敏, 吴永萍, 周杰, 等. 2014.影响华北盛夏降水的水汽路径客观定量化的研究[J].物理学报, 63(12):129201.
[30]Yuan Wenping, Zhou Guangsheng. 2004. Comparison between standardized precipitation index and Z index in China[J]. Chinese J Plant Ecology, 28(4):523-529.<br/>袁文平, 周广胜. 2004.标准化降水指标与Z指数在我国应用的对比分析[J].植物生态学报, 28(4):523-529.
[31]Tang Changyan, Tang Xinying, Deng Biao. 2015. Precipitation characteristics and water vapor source analysis and record heavy rainfall process in Sichuan[J]. Plateau Meteor, 34(6):1636-1647. DOI:10.7522/j.issn.1000-0534.2014.00121.<br/>周长艳, 唐信英, 邓彪. 2015.一次四川特大暴雨灾害降水特征及水汽来源分析[J].高原气象, 34(6):1636-1647.
[32]Zhou Changyan, Tang Xinying, Li Yueqing. 2012. Overview of the research on the water vapor and water vapor transport over the Tibetan Plateau and its surroundings[J]. Plateau Mountain Meteor Res, 32(3):76-83.<br/>周长艳, 唐信英, 李跃清. 2012.青藏高原及周边地区水汽、水汽输送相关研究综述[J].高原山地气象研究, 32(3):76-83.
[33]Zhang Renhe, Xu Xiangde. 2012. An applying platform for the new generation of the comprehensive atmospheric observing system over the Tibetan Plateau and its eastern Region-a China-Japan cooperative JICA project[J]. Eng Sci, 14(9):102-112.<br/>张人禾, 徐祥德. 2012.青藏高原及东缘新一代大气综合探测系统应用平台——中日合作JICA项目[J].中国工程科学, 14(9):102-112.
[34]Zhao Tianbao, Fu Congbin. 2009. Applicability evaluation of surface air temperature from several reanalysis datasets in China[J]. Plateau Meteor, 28(3):594-606.<br/>赵天保, 符淙斌. 2009.几种再分析地表气温资料在中国区域的适用性评估[J].高原气象, 28(3):594-606.
[35]Zhang Yuwei. 2013. Validation and analysis of AIRS measured water vapor over the Tibetan Plateau[D]. Beijing:Chinese Academy of Meteorological Sciences, 1-103.<br/>张雨薇. 2013. AIRS卫星观测的青藏高原大气水汽资料的评估与分析研究[D]. 北京: 中国气象科学研究院, 1-103.
文章导航

/