论文

大气边界层与风力发电的相互作用研究综述

  • 张双益 ,
  • 胡非
展开
  • 中国科学院大气物理研究所大气边界层物理与大气化学国家重点实验室, 北京 100029;中国科学院大学, 北京 100049;中国三峡新能源有限公司, 北京 100053

收稿日期: 2016-07-26

  网络出版日期: 2017-08-28

基金资助

国家自然科学基金项目(11472272)

Review on Study of Atmospheric Boundary Layer and Wind Power Generation Interaction

  • ZHANG Shuangyi ,
  • HU Fei
Expand
  • State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;University of Chinese Academy of Sciences, Beijing 100049, China;China Three Gorges New Energy Company Limited, Beijing 100053, China

Received date: 2016-07-26

  Online published: 2017-08-28

摘要

大气边界层与风力发电的相互作用是近年来的新兴研究热点,具有重要科学意义和高度应用价值。一方面,大气边界层的风切变现象可导致风电机组的输出功率减小、机械载荷增大;湍流现象在低(高)风速段导致机组的输出功率增大(减小),但对机械载荷具有单调增大的影响;大气边界层具有显著的日变化规律,层结状态的改变影响着地面风场的结构和特性,并导致风电机组的输出功率和机械载荷随之发生变化。另一方面,风电机组的叶轮旋转施加了扰动效应,导致下风向的风速减小、湍流增大,并且具有复杂空间分布特征;而大型风电场或风电基地产生的巨大扰动效应可影响和改变边界层的整体结构和特性,并影响局地甚至全球气候环境。

本文引用格式

张双益 , 胡非 . 大气边界层与风力发电的相互作用研究综述[J]. 高原气象, 2017 , 36(4) : 1127 -1137 . DOI: 10.7522/j.issn.1000-0534.2016.00095

Abstract

Atmospheric boundary layer (ABL) and wind power generation (WPG) interaction has become one of the hottest research subjects in recent years, and its study has both important scientific significance and high industrial value. Beginning with introduction of WPG's fundamentals and theories, this paper describes and discusses principles and mechanisms of ABL and WPG interaction, and also summarizes and concludes the latest study progresses in the field. The influence of ABL on WPG is mainly concerned with two aspects:The wind turbine's output power and mechanical load, which play key roles in the wind turbine's energy production and structural integrity. The Wind turbine's output power and mechanical load generally increase with wind speed, and they also were found to be affected by structure and characteristic of ABL's ground wind field in recent studies. Due to wildly existence of wind shear phenomena in ABL, the wind turbine's output power is decreased and mechanical load is increased. Turbulence phenomena have both positive influence on the wind turbine's output power in low wind speed section, and negative influence in high wind speed section. However, the wind turbine's mechanical load monotonically increases with turbulence intensity increasing. ABL's stratification stability has significant diurnal variation, along with changing ground wind field's structure and characteristic (such as wind shear and turbulence), and accordingly affects wind turbines' output power and mechanical load characteristics. The mechanisms of ABL's influence on WPG need to be further investigated, and the mathematic-physical models for practical engineering need to be established. The wind turbine absorbs wind energy by blades and rotor rotating, which accordingly exerts perturbation effect on the air flow. As a consequence, the downwind area's wind speed is decreased and turbulence is increased, and both of them were found having complex space distributions in latest studies. The so-called "wake effect" not only has negative influences on the wind turbine's output power and mechanical load, but also can change local meteorological elements and weather processes. Large scale wind farms or wind power bases, which extend tens of kilometers and planting hundreds of wind turbines, can produce huge perturbation effect and then change the whole structure and characteristic of ABL. The inner boundary layer model of "infinite" wind farm was developed to estimate ground wind field's wind speed and turbulence properties in large scale wind farms' affection scenario. The model was applied not only in wind energy industry for calculation of wind turbines' output power and mechanical load, but also in atmospheric science study for assessment impact of today's world-wide rapid growth of WPG on local and global climate-environment change.

参考文献

[1]Ainslie J F. 1988. Calculating the flowfield in the wake of wind turbines[J]. Journal of Wind Engineering & Industrial Aerodynamics, 27(1/2/3):213-224.
[2]Barrie D B, Kirk-Davidoff D B. 2009. Weather response to management of a large wind turbine array[J]. Atmospheric Chemistry & Physics, 9(1):2917-2931.
[3]Barthelmie R J, Folkerts L, Larsen G C, et al. 2006. Comparison of wake model simulations with offshore wind turbine wake profiles measured by sodar[J]. J Atmos Ocean Technol, 23(7):888-901.
[4]Barthelmie R J, Hansen K, Rados K, et al. 2009. Modelling the impact of wakes on power output at Nysted and Horns Rev[C] //Marseille, France:European Wind Energy Conference.
[5]Barthelmie R J, Pryor S C, Frandsen S T, et al. 2010. Quantifyingthe impact of wind turbine wakes on power output at offshore wind farms[J]. J Atmos Ocean Technol, 27(8):1302-1317.
[6]Brower M, Robinson N, Alonge C. 2012. Overview of six commercial and research wake models for large offshore wind farms[C] //Copenhagen, Denmark:Proceedings of the European Wind Energy Associate, European Wind Energy Conference.
[7]Burton T, Jenkins N, Sharpe D, etal. 2011. Wind energy handbook[M]. 2nd Edition. Chichester:John Wiley, 43-45.
[8]Chamorro L P, Porté-Agel F. 2010. Effects of thermal stability and incoming boundary-layer flow characteristics on wind-turbine wakes:a wind-tunnel study[J]. Bound-layer Meteor, 136(3):515-533.
[9]Dimitrov N, Natarajan A, Kelly M 2014. Model of wind shear conditional on turbulence and its impact on wind turbine loads[J]. Wind Energy, 18(11):1917-1931.
[10]Fitch A C, Olson J B, Lundquist J K, et al. 2012. Local and mesoscale impacts of wind farms as parameterized in a mesoscale NWP model[J]. Mon Wea Rev, 140(9):3017-3038.
[11]Frandsen S. 1992. On the wind speed reduction in the center of large clusters of wind turbines[J]. Journal of Wind Engineering & Industrial Aerodynamics, 39(suppl 1/2/3):251-265.
[12]Frandsen S, Barthelmie R, Rathmann O, et al. 2006. Analytical modelling of wind speed deficit in large offshore wind forms[J]. Wind Energy, 9(1/2):39-53.
[13]Frandsen S T. 2007. Turbulence and turbulence-generated structural loading in wind turbine clusters[R]. Technical University of Denmark, Wind Energy Report, 37.
[14]Glauert H. 1922. An aerodynamic theory of the airscrew[M]. 1st Edition. London:HM Stationery office, 87-89.
[15]Hansen K S, Barthelmie R J, Jensen L E, et al. 2012. The impact of turbulence intensity and atmospheric stability on power deficits due to wind turbine wakes at Horns Rev wind farm[J]. Wind Energy, 15(1):183-196.
[16]Jacobson M Z, Kaufman Y J. 2006. Wind reduction by aerosol particles[J]. Geophysical Research Letters, 33(24):194-199.
[17]Jensen N O. 1978. Change of surface roughness and the planetary boundary layer[J]. Quarterly Journal of the Royal Meteorological Society, 104(440):351-356.
[18]Keith D W, Schneider S H. 2004. The influence of large-scale wind power on global climate[J]. Proceedings of the National Academy of Sciences of the United States of America, 101(46):16115-16120.
[19]Larsen S E. 2015. Lectures in Micro Meteorology[R]. Denmark Technical University Wind Energy Report, 278.
[20]Larsen T J, Madsen H A, Larsen G C, et al. 2013. Validation of the dynamic wake meander model for loads and power production in the Egmond aan Zee wind farm[J]. Wind Energy, 16(4):605-624.
[21]Lu H, Porté-Agel F. 2010. Large-eddy simulation of a very large wind farm in a stable atmospheric boundary layer[J]. Physics of Fluids, 23(23):2656-2657.
[22]Meyers J, Meneveau C. 2012. Optimal turbine spacing in fully developed wind farm boundary layers[J]. Wind Energy, 15(15):305-317.
[23]Monin A S, Obukhov A M, Monin A S, et al. 1954. Basic laws of turbulent mixing in thesurface layer of the atmosphere[J]. Contrib Geophys inst acad sci ussr, 24(151):163-187.
[24]Pe?a A, Réthoré P E, Rathmann O. 2014. Modeling large offshore wind farms under different atmospheric stability regimes with the Park wake model[J]. Renewable Energy, 70(5):164-171.
[25]Petersen E L, Madsen P H. 2013. Meteorology and Wind Power[M]. 1st Edition. New York:Springer, 1249-1270.
[26]Porté-Agel F, Wu Y T, Lu H, et al. 2011. Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms[J]. Journal of Wind Engineering and Industrial Aerodynamics, 99(4):154-168.
[27]Rajewski D A, Takle E S, Lundquist J K, et al. 2012. Crop Wind Energy Experiment (CWEX):Observations of Surface-Layer, Boundary Layer, and Mesoscale Interactions with awind farm[J]. Bulletin of the American Meteorological Society, 94(5):655-672.
[28]Roy S B, Pacala S W, Walko R L. 2004. Can large wind farms affect local meteorology[J]. Journal of Geophysical Research Atmospheres, 109(D19):4099-4107.
[29]Roy S B. 2011. Simulating impacts of wind farms on local hydrometeorology[J]. Journal of Wind Engineeringand Industrial Aerodynamics, 99(4):491-498.
[30]Rozenn W, Michael C S, Torben L J, et al. 2010. Simulation of shear and turbulence impact on wind turbine power performance[R]. Denmark Technical University Wind Energy Report, 55.
[31]Sathe A, Mann J, Barlas T, et al. 2013. Influence of atmospheric stability on wind turbine loads[J]. Wind Engineering, 16(7):1013-1032.
[32]Tennekes H, Lumley J. 1972. A first course in turbulence[M]. 1st Edition. Cambridge:MIT Press, 1153-1176.
[33]Wagner R, Courtney M S, Gottschall J, et al. 2011. Accounting for the shear in power performance measurement[J]. Wind Energy, 14(8):993-1004.
[34]Wharton S, Lundquist J K. 2012. Atmospheric stability affects wind turbine power collection[J]. Environmental Research Letters, 7(1):17-35.
[35]Wu Y T, Porté-Agel F. 2012. Simulation of turbulent flow inside and above wind farms:model validation and layout effects[J]. Boundary-Layer Meteorology, 146(2):181-205.
[36]Wyngaard J C. 1990. Scalar fluxes in the planetary boundary layer-theory, modeling, and measurement[J]. Boundary-Layer Meteorology, 50:49-75.
[37]Chen Xuefeng, Li Jimeng, Cheng Hang, et al. 2011. Research and application of condition monitoring and fault diagnosis technology in wind turbines[J]. Journal of Mechanical Engineering, 47(9):45-52.<br/>陈雪峰, 李继猛, 程航, 等. 2011.风力发电机状态监测和故障诊断技术的研究与进展[J].机械工程学报, 47(9):45-52.
[38]Dong Baoju, Li Jian, Sun Jihua, et al. 2016. Vertical structure and variation characteristics of wind field in low-level atmosphere in the southeastern margin of Qinghai-Xizang Plateau[J]. Plateau Meteor, 35(3):597-607. DOI:10. 7522/j. issn. 1000-0534. 2015. 00041.<br/>董保举, 李建, 孙绩华, 等. 2016.青藏高原东南缘低层风场垂直结构与变化特征[J].高原气象, 35(3):597-607.
[39]Dai yuanjun, Wang Jianwen, Wen Caifeng, et al. 2011. The forecast of engergy production of wind turbine based on WAsP[J]. Renewable Energy Resource, 29(1):103-106.<br/>代元军, 汪建文, 温彩凤, 等. 2011.利用WAsP软件对风力机发电量的预测[J].可再生能源, 29(1):103-106.
[40]Du Zhaohui. 1999. A 3D stall delay model for horizontal axis wind turbine performance prediction:I. theoretic and analysis[J]. Acta Energiae Solaris Sinica, 20(4):392-397.<br/>杜朝辉. 1999.水平轴风力涡轮设计与性能预估方法的三维失速延迟模型-Ⅰ.理论基础[J].太阳能学报, 20(4):392-397.
[41]Fu Deyi, Xue Yang, Jiao Bo, et al. 2015. Effects on the turbulence intensity to wind turbine fatigue equivalent load[J]. Journal of North China Electric Power University, 42(1):45-50.<br/>付德义, 薛扬, 焦渤, 等. 2015.湍流强度对风电机组疲劳等效载荷的影响[J].华北电力大学学报, 42(1):45-50.
[42]He Wei, Tian De, Deng Ying, et al. 2013. Turbulent wind field simulation of wind turbines with rotational effects[J]. Proceedings of the Chinese Society for Electrical Engineering, 33(11):82-87.<br/>何伟, 田德, 邓英, 等. 2013.风力发电机组旋转湍流风场数值模拟[J].中国电机工程学报, 33(11):82-87.
[43]Hu Fei, Hong Zhongxiang, Lei Xiaoen. 2003. Progress of atmospheric boundary layer physics and atmospheric enviroment research in IAP[J]. Chinese J Atmos Sci, 27(4):712-728.<br/>胡非, 洪钟祥, 雷孝恩. 2003.大气边界层和大气环境研究进展[J].大气科学, 27(4):712-728.
[44]Li Yanying, Zhang Qiang, Zhang Aiping, et al. 2016. Analysis on atmosphere boundary layer variation characteristics and their impact factors in arid region and semi-arid region over northwest China[J]. Plateau Meteor, 35(2):385-396. DOI:10. 7522/j. issn. 1000-0534. 2014. 00153.<br/>李岩瑛, 张强, 张爱萍, 等. 2016.干旱半干旱区边界层变化特征及其影响因子分析[J].高原气象, 35(2):385-396.
[45]Li Zuowu, He Dexin. 2013. Reviews of fliuid dynamics researches in wind energy engineering[J]. Advances in Mechanics, 43(5):472-525.<br/>黎作武, 贺德馨. 2013.风能工程中流体力学问题的研究现状与进展[J].力学进展, 43(5):472-525.
[46]Liang Jiening. 2014. Atmospheric boundary layer turbulence characteristics over complex terrain of semiarid region in the Loess Plateau[D]. Lanzhou:Lanzhou University. 1-4.<br/>梁捷宁. 2014. 黄土高原半干旱区复杂地形上大气边界层湍流特征[D]. 兰州: 兰州大学. 1-4.
[47]Liu Deshun, Dai Juchuan, Hu Yanping, et al. 2013. Status and development trends of modern large-scale wind turbines[J]. China Mechanical Engineering, 24(1):125-135.<br/>刘德顺, 戴巨川, 胡燕平, 等. 2013.现代大型风电机组现状与发展趋势[J].中国机械工程, 24(1):125-135.
[48]Liu Lei, gao Xiaoqing, Chen Bolong, et al. 2012. Preliminary estimates of wind energy resources deficit in large wind farm[J]. Plateau Meteor, 31(4):1139-1144.<br/>刘磊, 高晓清, 陈伯龙, 等. 2012.大规模风电场建成后对风能资源影响的研究[J].高原气象, 31(4):1139-1144.
[49]Liu Lei, Hu Fei, Li Jun, et al. 2013. On the use of Weierstrass-Mandelbrot funtion to simulate fractal wind fluctuations[J]. Climatic Environ Res, 18(1):43-50.<br/>刘磊, 胡非, 李军, 等. 2013.基于Weierstrass-Mandelbrot函数的分形风速脉动仿真[J].气候与环境研究, 18(1):43-50.
[50]Luo Chengxian. 2012. Wind power generation today in the world and prospect forecast[J]. Sino-global Energy, 17(3):24-31.<br/>罗承先. 2012.世界风力发电现状与前景预测[J].中外能源, 17(3):24-31.
[51]Pei Shengxuan, Mao Jietai, Li Jianguo, et al. 2013. Atmospheric Physcis[M]. 2nd Edition. Beijing:Peking University Press, 243-277.<br/>盛裴轩, 毛节泰, 李建国, 等. 2013.大气物理学[M].第二版.北京:北京大学出版社, 243-277.
[52]Tian Dongxia, Guo Jianxia, Guan Yanhua, et al. 2015. Quantitative evaluation on requirement of obstacle distance for wind observation[J]. Plateau Meteor, 34(3):870-880. DOI:10. 7522/j. issn. 1000-0534. 2014. 00052.<br/>田东霞, 郭建侠, 关彦华, 等. 2015.风观测对障碍物距离要求的定量评估[J].高原气象, 34(3):870-880.
[53]Wang Fujun. 2004. Computational fluid dynamics analy[M]. 1st Edition. Beijing:Tsinghua University Press, 118-119.<br/>王福军. 2004.计算流体动力学分析[M].第一版.北京:清华大学出版社, 118-119.
[54]Wu Yichun, Ding Ming. 2007. Optimal choice of wind power generation unit in wind farms[J]. Acta Energiae Solaris Sinica, 28(10):1163-1167.<br/>吴义纯, 丁明. 2007.风电场风力发电机组优化选型[J].太阳能学报, 28(10):1163-1167.
[55]Xiao Chuangying, Wang Ningbo, Zhi Jing, et al. 2010. Power characteristics of Jiuquan wind power base[J]. Automation of Electric Power Systems, 34(17):64-67.<br/>肖创英, 汪宁渤, 陟晶, 等. 2010.甘肃酒泉风电出力特性分析[J].电力系统自动化, 34(17):64-67.
[56]Xin Yu, Chen Hongwu. 2014. Inflence of CALMET parameter adjustment in the XJRUC coupling of CALMET over Dabanchen-Xiaocaohu Wind Area[J]. Plateau Meteor, 33(6):1674-1686. DOI:10. 7522/j. issn. 1000-0534. 2013. 00191.<br/>辛渝, 陈洪武. 2014. XJRUC/CALMET及CALMET不同参数调整对达坂城-小草湖区风场预报影响[J].高原气象, 33(6):1674-1686.
[57]Yang Yuhua, Liu Changhai, Jimy Dudhia, et al. 2016. Evaluation of two typical PBL parameterization schemes based on large-eddy simulation result[J]. Plateau Meteor, 33(1):172-180. DOI:10. 7522/j. issn. 1000-0534. 2014. 00138.<br/>杨玉华, 刘长海, Jimy Dudhia, 等. 2016.基于大涡模拟对两类典型边界层参数化方案的评估分析[J].高原气象, 33(1):172-180.
[58]Zhang Shuangyi, Wang Yiqun, Lü Zhou'an, et al. 2015. A study on mountain wind power power project's installed capacity optimization method[J]. Wind energy, 2015(1):58-62.<br/>张双益, 王益群, 吕宙安, 等. 2015.山地风电项目的装机容量优化方法研究[J].风能, 2015(1):58-62.
[59]Zhang Zhen, Zhang Xiaodong. 2012. Reserarch on the wake model of wind turbines based on semi-empirical formula[J]. Modern Electric Power, 29(2):64-67.<br/>张镇, 张晓东. 2012.基于半经验公式的风力机尾流模型研究[J].现代电力, 29(2):64-67.
[60]Zhao Zongci, Luo Yong, Jiang Ying. 2011. Advances in assessment on impacts of wind farms upon climate change[J]. Advances in Climate Change Research, 7(6):400-406.<br/>赵宗慈, 罗勇, 江滢. 2011.风电场对气候变化影响研究进展[J].气候变化研究进展, 7(6):400-406.
[61]Zhou Pengzhan, Zeng Jingcheng, Xiao Jiayu, et al. 2010. Aerodynamic analysis of a large-scale wind turbine bladed based on BLADED software[J]. Journal of Cental South University (Science and Technology). 41(5):2022-2027.<br/>周鹏展, 曾竟成, 肖加余, 等. 2010.基于BLADED软件的大型风力机叶片气动分析[J].中南大学学报(自然科学版), 41(5):2022-2027.
[62]China Machinery Industry Federation. 2010. GB/Z 25426-2010 Wind turbine generator systems measurement of mechanical loads[S]. Beijing:China Electric Power Press, 17-19.<br/>中国机械工业联合会. 2010. GB/Z 25426-2010风力发电机组机械载荷测量[S]. 北京: 中国电力出版社, 17-19.
[63]China Machinery Industry Federation. 2012a. GB/T 18451. 2-2012/IEC 61400-12-1:2005 Power performance measurements of electricity producing wind turbines[S]. Beijing:China Electric Power Press, 14-16.<br/>中国机械工业联合会. 2012a. GB/T 18451. 2-2012风力发电机组功率特性测试[S]. 北京: 中国电力出版社, 14-16.
[64]China Machinery Industry Federation. 2012b. GB/T 18451. 1-2012/IEC 61400-1:2005 Wind turbine generator systems-Design requirements[S]. Beijing:China Electric Power Press, 50-51.<br/>中国机械工业联合会. 2012b. GB/T 18451. 1-2012风力发电机组设计要求[S]. 北京: 中国电力出版社, 50-51.
文章导航

/