[1]Ainslie J F. 1988. Calculating the flowfield in the wake of wind turbines[J]. Journal of Wind Engineering & Industrial Aerodynamics, 27(1/2/3):213-224.
[2]Barrie D B, Kirk-Davidoff D B. 2009. Weather response to management of a large wind turbine array[J]. Atmospheric Chemistry & Physics, 9(1):2917-2931.
[3]Barthelmie R J, Folkerts L, Larsen G C, et al. 2006. Comparison of wake model simulations with offshore wind turbine wake profiles measured by sodar[J]. J Atmos Ocean Technol, 23(7):888-901.
[4]Barthelmie R J, Hansen K, Rados K, et al. 2009. Modelling the impact of wakes on power output at Nysted and Horns Rev[C] //Marseille, France:European Wind Energy Conference.
[5]Barthelmie R J, Pryor S C, Frandsen S T, et al. 2010. Quantifyingthe impact of wind turbine wakes on power output at offshore wind farms[J]. J Atmos Ocean Technol, 27(8):1302-1317.
[6]Brower M, Robinson N, Alonge C. 2012. Overview of six commercial and research wake models for large offshore wind farms[C] //Copenhagen, Denmark:Proceedings of the European Wind Energy Associate, European Wind Energy Conference.
[7]Burton T, Jenkins N, Sharpe D, etal. 2011. Wind energy handbook[M]. 2nd Edition. Chichester:John Wiley, 43-45.
[8]Chamorro L P, Porté-Agel F. 2010. Effects of thermal stability and incoming boundary-layer flow characteristics on wind-turbine wakes:a wind-tunnel study[J]. Bound-layer Meteor, 136(3):515-533.
[9]Dimitrov N, Natarajan A, Kelly M 2014. Model of wind shear conditional on turbulence and its impact on wind turbine loads[J]. Wind Energy, 18(11):1917-1931.
[10]Fitch A C, Olson J B, Lundquist J K, et al. 2012. Local and mesoscale impacts of wind farms as parameterized in a mesoscale NWP model[J]. Mon Wea Rev, 140(9):3017-3038.
[11]Frandsen S. 1992. On the wind speed reduction in the center of large clusters of wind turbines[J]. Journal of Wind Engineering & Industrial Aerodynamics, 39(suppl 1/2/3):251-265.
[12]Frandsen S, Barthelmie R, Rathmann O, et al. 2006. Analytical modelling of wind speed deficit in large offshore wind forms[J]. Wind Energy, 9(1/2):39-53.
[13]Frandsen S T. 2007. Turbulence and turbulence-generated structural loading in wind turbine clusters[R]. Technical University of Denmark, Wind Energy Report, 37.
[14]Glauert H. 1922. An aerodynamic theory of the airscrew[M]. 1st Edition. London:HM Stationery office, 87-89.
[15]Hansen K S, Barthelmie R J, Jensen L E, et al. 2012. The impact of turbulence intensity and atmospheric stability on power deficits due to wind turbine wakes at Horns Rev wind farm[J]. Wind Energy, 15(1):183-196.
[16]Jacobson M Z, Kaufman Y J. 2006. Wind reduction by aerosol particles[J]. Geophysical Research Letters, 33(24):194-199.
[17]Jensen N O. 1978. Change of surface roughness and the planetary boundary layer[J]. Quarterly Journal of the Royal Meteorological Society, 104(440):351-356.
[18]Keith D W, Schneider S H. 2004. The influence of large-scale wind power on global climate[J]. Proceedings of the National Academy of Sciences of the United States of America, 101(46):16115-16120.
[19]Larsen S E. 2015. Lectures in Micro Meteorology[R]. Denmark Technical University Wind Energy Report, 278.
[20]Larsen T J, Madsen H A, Larsen G C, et al. 2013. Validation of the dynamic wake meander model for loads and power production in the Egmond aan Zee wind farm[J]. Wind Energy, 16(4):605-624.
[21]Lu H, Porté-Agel F. 2010. Large-eddy simulation of a very large wind farm in a stable atmospheric boundary layer[J]. Physics of Fluids, 23(23):2656-2657.
[22]Meyers J, Meneveau C. 2012. Optimal turbine spacing in fully developed wind farm boundary layers[J]. Wind Energy, 15(15):305-317.
[23]Monin A S, Obukhov A M, Monin A S, et al. 1954. Basic laws of turbulent mixing in thesurface layer of the atmosphere[J]. Contrib Geophys inst acad sci ussr, 24(151):163-187.
[24]Pe?a A, Réthoré P E, Rathmann O. 2014. Modeling large offshore wind farms under different atmospheric stability regimes with the Park wake model[J]. Renewable Energy, 70(5):164-171.
[25]Petersen E L, Madsen P H. 2013. Meteorology and Wind Power[M]. 1st Edition. New York:Springer, 1249-1270.
[26]Porté-Agel F, Wu Y T, Lu H, et al. 2011. Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms[J]. Journal of Wind Engineering and Industrial Aerodynamics, 99(4):154-168.
[27]Rajewski D A, Takle E S, Lundquist J K, et al. 2012. Crop Wind Energy Experiment (CWEX):Observations of Surface-Layer, Boundary Layer, and Mesoscale Interactions with awind farm[J]. Bulletin of the American Meteorological Society, 94(5):655-672.
[28]Roy S B, Pacala S W, Walko R L. 2004. Can large wind farms affect local meteorology[J]. Journal of Geophysical Research Atmospheres, 109(D19):4099-4107.
[29]Roy S B. 2011. Simulating impacts of wind farms on local hydrometeorology[J]. Journal of Wind Engineeringand Industrial Aerodynamics, 99(4):491-498.
[30]Rozenn W, Michael C S, Torben L J, et al. 2010. Simulation of shear and turbulence impact on wind turbine power performance[R]. Denmark Technical University Wind Energy Report, 55.
[31]Sathe A, Mann J, Barlas T, et al. 2013. Influence of atmospheric stability on wind turbine loads[J]. Wind Engineering, 16(7):1013-1032.
[32]Tennekes H, Lumley J. 1972. A first course in turbulence[M]. 1st Edition. Cambridge:MIT Press, 1153-1176.
[33]Wagner R, Courtney M S, Gottschall J, et al. 2011. Accounting for the shear in power performance measurement[J]. Wind Energy, 14(8):993-1004.
[34]Wharton S, Lundquist J K. 2012. Atmospheric stability affects wind turbine power collection[J]. Environmental Research Letters, 7(1):17-35.
[35]Wu Y T, Porté-Agel F. 2012. Simulation of turbulent flow inside and above wind farms:model validation and layout effects[J]. Boundary-Layer Meteorology, 146(2):181-205.
[36]Wyngaard J C. 1990. Scalar fluxes in the planetary boundary layer-theory, modeling, and measurement[J]. Boundary-Layer Meteorology, 50:49-75.
[37]Chen Xuefeng, Li Jimeng, Cheng Hang, et al. 2011. Research and application of condition monitoring and fault diagnosis technology in wind turbines[J]. Journal of Mechanical Engineering, 47(9):45-52.<br/>陈雪峰, 李继猛, 程航, 等. 2011.风力发电机状态监测和故障诊断技术的研究与进展[J].机械工程学报, 47(9):45-52.
[38]Dong Baoju, Li Jian, Sun Jihua, et al. 2016. Vertical structure and variation characteristics of wind field in low-level atmosphere in the southeastern margin of Qinghai-Xizang Plateau[J]. Plateau Meteor, 35(3):597-607. DOI:10. 7522/j. issn. 1000-0534. 2015. 00041.<br/>董保举, 李建, 孙绩华, 等. 2016.青藏高原东南缘低层风场垂直结构与变化特征[J].高原气象, 35(3):597-607.
[39]Dai yuanjun, Wang Jianwen, Wen Caifeng, et al. 2011. The forecast of engergy production of wind turbine based on WAsP[J]. Renewable Energy Resource, 29(1):103-106.<br/>代元军, 汪建文, 温彩凤, 等. 2011.利用WAsP软件对风力机发电量的预测[J].可再生能源, 29(1):103-106.
[40]Du Zhaohui. 1999. A 3D stall delay model for horizontal axis wind turbine performance prediction:I. theoretic and analysis[J]. Acta Energiae Solaris Sinica, 20(4):392-397.<br/>杜朝辉. 1999.水平轴风力涡轮设计与性能预估方法的三维失速延迟模型-Ⅰ.理论基础[J].太阳能学报, 20(4):392-397.
[41]Fu Deyi, Xue Yang, Jiao Bo, et al. 2015. Effects on the turbulence intensity to wind turbine fatigue equivalent load[J]. Journal of North China Electric Power University, 42(1):45-50.<br/>付德义, 薛扬, 焦渤, 等. 2015.湍流强度对风电机组疲劳等效载荷的影响[J].华北电力大学学报, 42(1):45-50.
[42]He Wei, Tian De, Deng Ying, et al. 2013. Turbulent wind field simulation of wind turbines with rotational effects[J]. Proceedings of the Chinese Society for Electrical Engineering, 33(11):82-87.<br/>何伟, 田德, 邓英, 等. 2013.风力发电机组旋转湍流风场数值模拟[J].中国电机工程学报, 33(11):82-87.
[43]Hu Fei, Hong Zhongxiang, Lei Xiaoen. 2003. Progress of atmospheric boundary layer physics and atmospheric enviroment research in IAP[J]. Chinese J Atmos Sci, 27(4):712-728.<br/>胡非, 洪钟祥, 雷孝恩. 2003.大气边界层和大气环境研究进展[J].大气科学, 27(4):712-728.
[44]Li Yanying, Zhang Qiang, Zhang Aiping, et al. 2016. Analysis on atmosphere boundary layer variation characteristics and their impact factors in arid region and semi-arid region over northwest China[J]. Plateau Meteor, 35(2):385-396. DOI:10. 7522/j. issn. 1000-0534. 2014. 00153.<br/>李岩瑛, 张强, 张爱萍, 等. 2016.干旱半干旱区边界层变化特征及其影响因子分析[J].高原气象, 35(2):385-396.
[45]Li Zuowu, He Dexin. 2013. Reviews of fliuid dynamics researches in wind energy engineering[J]. Advances in Mechanics, 43(5):472-525.<br/>黎作武, 贺德馨. 2013.风能工程中流体力学问题的研究现状与进展[J].力学进展, 43(5):472-525.
[46]Liang Jiening. 2014. Atmospheric boundary layer turbulence characteristics over complex terrain of semiarid region in the Loess Plateau[D]. Lanzhou:Lanzhou University. 1-4.<br/>梁捷宁. 2014. 黄土高原半干旱区复杂地形上大气边界层湍流特征[D]. 兰州: 兰州大学. 1-4.
[47]Liu Deshun, Dai Juchuan, Hu Yanping, et al. 2013. Status and development trends of modern large-scale wind turbines[J]. China Mechanical Engineering, 24(1):125-135.<br/>刘德顺, 戴巨川, 胡燕平, 等. 2013.现代大型风电机组现状与发展趋势[J].中国机械工程, 24(1):125-135.
[48]Liu Lei, gao Xiaoqing, Chen Bolong, et al. 2012. Preliminary estimates of wind energy resources deficit in large wind farm[J]. Plateau Meteor, 31(4):1139-1144.<br/>刘磊, 高晓清, 陈伯龙, 等. 2012.大规模风电场建成后对风能资源影响的研究[J].高原气象, 31(4):1139-1144.
[49]Liu Lei, Hu Fei, Li Jun, et al. 2013. On the use of Weierstrass-Mandelbrot funtion to simulate fractal wind fluctuations[J]. Climatic Environ Res, 18(1):43-50.<br/>刘磊, 胡非, 李军, 等. 2013.基于Weierstrass-Mandelbrot函数的分形风速脉动仿真[J].气候与环境研究, 18(1):43-50.
[50]Luo Chengxian. 2012. Wind power generation today in the world and prospect forecast[J]. Sino-global Energy, 17(3):24-31.<br/>罗承先. 2012.世界风力发电现状与前景预测[J].中外能源, 17(3):24-31.
[51]Pei Shengxuan, Mao Jietai, Li Jianguo, et al. 2013. Atmospheric Physcis[M]. 2nd Edition. Beijing:Peking University Press, 243-277.<br/>盛裴轩, 毛节泰, 李建国, 等. 2013.大气物理学[M].第二版.北京:北京大学出版社, 243-277.
[52]Tian Dongxia, Guo Jianxia, Guan Yanhua, et al. 2015. Quantitative evaluation on requirement of obstacle distance for wind observation[J]. Plateau Meteor, 34(3):870-880. DOI:10. 7522/j. issn. 1000-0534. 2014. 00052.<br/>田东霞, 郭建侠, 关彦华, 等. 2015.风观测对障碍物距离要求的定量评估[J].高原气象, 34(3):870-880.
[53]Wang Fujun. 2004. Computational fluid dynamics analy[M]. 1st Edition. Beijing:Tsinghua University Press, 118-119.<br/>王福军. 2004.计算流体动力学分析[M].第一版.北京:清华大学出版社, 118-119.
[54]Wu Yichun, Ding Ming. 2007. Optimal choice of wind power generation unit in wind farms[J]. Acta Energiae Solaris Sinica, 28(10):1163-1167.<br/>吴义纯, 丁明. 2007.风电场风力发电机组优化选型[J].太阳能学报, 28(10):1163-1167.
[55]Xiao Chuangying, Wang Ningbo, Zhi Jing, et al. 2010. Power characteristics of Jiuquan wind power base[J]. Automation of Electric Power Systems, 34(17):64-67.<br/>肖创英, 汪宁渤, 陟晶, 等. 2010.甘肃酒泉风电出力特性分析[J].电力系统自动化, 34(17):64-67.
[56]Xin Yu, Chen Hongwu. 2014. Inflence of CALMET parameter adjustment in the XJRUC coupling of CALMET over Dabanchen-Xiaocaohu Wind Area[J]. Plateau Meteor, 33(6):1674-1686. DOI:10. 7522/j. issn. 1000-0534. 2013. 00191.<br/>辛渝, 陈洪武. 2014. XJRUC/CALMET及CALMET不同参数调整对达坂城-小草湖区风场预报影响[J].高原气象, 33(6):1674-1686.
[57]Yang Yuhua, Liu Changhai, Jimy Dudhia, et al. 2016. Evaluation of two typical PBL parameterization schemes based on large-eddy simulation result[J]. Plateau Meteor, 33(1):172-180. DOI:10. 7522/j. issn. 1000-0534. 2014. 00138.<br/>杨玉华, 刘长海, Jimy Dudhia, 等. 2016.基于大涡模拟对两类典型边界层参数化方案的评估分析[J].高原气象, 33(1):172-180.
[58]Zhang Shuangyi, Wang Yiqun, Lü Zhou'an, et al. 2015. A study on mountain wind power power project's installed capacity optimization method[J]. Wind energy, 2015(1):58-62.<br/>张双益, 王益群, 吕宙安, 等. 2015.山地风电项目的装机容量优化方法研究[J].风能, 2015(1):58-62.
[59]Zhang Zhen, Zhang Xiaodong. 2012. Reserarch on the wake model of wind turbines based on semi-empirical formula[J]. Modern Electric Power, 29(2):64-67.<br/>张镇, 张晓东. 2012.基于半经验公式的风力机尾流模型研究[J].现代电力, 29(2):64-67.
[60]Zhao Zongci, Luo Yong, Jiang Ying. 2011. Advances in assessment on impacts of wind farms upon climate change[J]. Advances in Climate Change Research, 7(6):400-406.<br/>赵宗慈, 罗勇, 江滢. 2011.风电场对气候变化影响研究进展[J].气候变化研究进展, 7(6):400-406.
[61]Zhou Pengzhan, Zeng Jingcheng, Xiao Jiayu, et al. 2010. Aerodynamic analysis of a large-scale wind turbine bladed based on BLADED software[J]. Journal of Cental South University (Science and Technology). 41(5):2022-2027.<br/>周鹏展, 曾竟成, 肖加余, 等. 2010.基于BLADED软件的大型风力机叶片气动分析[J].中南大学学报(自然科学版), 41(5):2022-2027.
[62]China Machinery Industry Federation. 2010. GB/Z 25426-2010 Wind turbine generator systems measurement of mechanical loads[S]. Beijing:China Electric Power Press, 17-19.<br/>中国机械工业联合会. 2010. GB/Z 25426-2010风力发电机组机械载荷测量[S]. 北京: 中国电力出版社, 17-19.
[63]China Machinery Industry Federation. 2012a. GB/T 18451. 2-2012/IEC 61400-12-1:2005 Power performance measurements of electricity producing wind turbines[S]. Beijing:China Electric Power Press, 14-16.<br/>中国机械工业联合会. 2012a. GB/T 18451. 2-2012风力发电机组功率特性测试[S]. 北京: 中国电力出版社, 14-16.
[64]China Machinery Industry Federation. 2012b. GB/T 18451. 1-2012/IEC 61400-1:2005 Wind turbine generator systems-Design requirements[S]. Beijing:China Electric Power Press, 50-51.<br/>中国机械工业联合会. 2012b. GB/T 18451. 1-2012风力发电机组设计要求[S]. 北京: 中国电力出版社, 50-51.