论文

青藏高原夏季降水日变化特征分析

  • 计晓龙 ,
  • 吴昊旻 ,
  • 黄安宁 ,
  • 赵卫 ,
  • 吴阳
展开
  • 南京大学大气科学学院, 中国气象局-南京大学气候预测研究联合实验室, 南京 210046;江苏省气候变化协同创新 中心, 南京 210046;丽水市气象局, 丽水 323000;环境保护部南京环境科学研究所, 南京 210042

收稿日期: 2015-11-16

  网络出版日期: 2017-10-28

基金资助

国家自然科学基金项目(91537102, 41175086);江苏高校“青蓝工程”优秀青年骨干教师培养计划(0207001802)

Characteristics of the Precipitation Diurnal Variation over Qinghai-Tibetan Plateau in Summer

  • JI Xiaolong ,
  • WU Haomin ,
  • HUANG Anning ,
  • ZHAO Wei ,
  • WU Yang
Expand
  • China Meteorological Administration-Nanjing University(CMA-NJU) Joint Laboratory for Climate Prediction Studies, School of Atmospheric Sciences, Nanjing University, Nanjing 210046, China;Jiangsu Collaborative Innovation Center for Climate Change, Nanjing 210046, China;Lishui Meteorological Bureau, Lishui 323000, China;Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China

Received date: 2015-11-16

  Online published: 2017-10-28

摘要

利用2008-2014年逐小时空间分辨率为0.1°的全国自动站观测降水资料和CMORPH卫星反演降水融合资料, 研究了青藏高原(下称高原)夏季降水日变化特征, 并探讨了不同持续时间和等级降水对降水量日变化的影响。结果表明, 整个高原地区夏季降水量和降水频率的日变化表现出明显的凌晨和傍晚的双峰结构, 而降水强度的双峰结构却不太明显。进一步对各分区降水日变化特征的分析发现, 高原中西部降水日变化特征与整个高原地区的一致, 而高原北部(东部)地区降水量和频率的日峰值出现在傍晚(午夜-凌晨)。降水持续时间对降水量日变化有显著的影响, 高原夏季降水量日变化的双峰特征是由短时(1~3 h)和长持续性(6 h以上)降水共同作用造成的, 午夜-凌晨(傍晚)的降水日峰值主要是由于长持续性(短时)降水所引起。分析不同等级降水量日变化特征发现, 高原北部地区小-大雨(暴雨)的降水量日峰值基本出现在下午(午夜), 而高原中西部不同等级降水量的日变化基本都呈现出傍晚和午夜-凌晨的双峰结构, 高原东部地区不同等级降水量的日变化形式较一致, 日峰值出现在午夜-凌晨。

本文引用格式

计晓龙 , 吴昊旻 , 黄安宁 , 赵卫 , 吴阳 . 青藏高原夏季降水日变化特征分析[J]. 高原气象, 2017 , 36(5) : 1188 -1200 . DOI: 10.7522/j.issn.1000-0534.2016.00119

Abstract

Based on the hourly emerged precipitation product with the horizontal resolution of 0.1° over China from 2008 to 2014 which was derived from the hourly precipitation observed by automatic weather stations (AWS) in China and retrieved from CMORPH satellite data, the characteristics of precipitation diurnal variations over Qinghai-Tibetan Plateau in summer had been studied.The impact of the precipitation with different duration and categories on the diurnal cycle of precipitation amount was also further revealed.Results show that the diurnal cycles of precipitation amount and frequency over the entire Qinghai-Tibetan Plateau exhibit two diurnal peaks with one in late afternoon and the other in early morning.However, the diurnal variation of the precipitation intensity shows an early morning maximum and a weaker peak at midnight.Further analysis shows that the precipitation diurnal variations over western-central Qinghai-Tibetan Plateau resemble that over the entire Qinghai-Tibetan Plateau, however, the diurnal variation of the precipitation amount and frequency over northern (eastern) Qinghai-Tibetan Plateau shows a late afternoon (midnight-early morning) maximum.In addition, the duration time of precipitation plays an important role in the diurnal cycle of precipitation amount.Diurnal variation of the summer precipitation amount over Qinghai-Tibetan Plateau showing two obvious peaks is resulted from the precipitation with both short (1~3 hours) and long (over 6 hours) duration time.The midnight-early morning (late afternoon) diurnal peak of the summer precipitation is attributed to the precipitation with long (short) duration time.Furthermore, the diurnal peak of the light to heavy (torrential) precipitation over northern Qinghai-Tibetan Plateau occurs in the afternoon (midnight).The diurnal variation of the precipitation for different categories consistently shows two peaks (one occurs in late afternoon, the other appears in midnight to early morning).Meanwhile, the diurnal variations of precipitation for different precipitation categories over eastern Qinghai-Tibetan Plateau show very similar features with a midnight-early morning maximum.

参考文献

[1]Dai A. 1999a. Recent changes in the diurnal cycle of precipitation over the United States[J]. Geophys Res Lett, 26(3):341-344.
[2]Dai A, Giorgi F, Trenberth K E. 1999b. Observed and model simulated precipitation diurnal cycle over the contiguous United States[J]. J Geophys Res, 104(D6):6377-6402.
[3]Joyce R J, Janowiak J E, Arkin P A, et al. 2004. CMORPH:A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution[J]. J Hydrometeor, 5(3):487-503.
[4]Landin M G, Bosart L F. 1985. Diurnal variability of precipitation in the northeastern United States[J]. Mon Wea Rev, 113(6):989-1014.
[5]Roe G H. 2005. Orographic precipitation[J]. Annual Review of Earth and Planetary Sciences, 33:645-671.
[6]Shen Y, Zhao P, Pan Y, et al. 2014. A high spatiotemporal gauge-satellite merged precipitation analysis over China[J], J Geophys Res, 119(6):3063-3075.
[7]Sorooshian S, Gao X, Hsu K, et al. 2002. Diurnal variability of tropical rainfall retrieved from combined GOES and TRMM satellite information[J]. J Climate, 15(9):983-1001.
[8]Zhou T J, Yu R C, Chen H M, et al. 2008. Summer Precipitation Frequency, Intensity, and Diurnal Cycle over China:A Comparison of Satellite Data with Rain Gauge Observations[J]. J Climate, 21(2007):3997-4010.
[9]Wallace J M. 2014. Diurnal variations in precipitation and thunderstorm frequency over the conterminous United States[J]. Mon Wea Rev, 103(103):406-419.
[10]Yu R C, Zhou T J, Xiong A Y, et al. 2007a. Diurnal variations of summer precipitation over contiguous China[J]. Geophys Res Lett, 34(1):223-234.
[11]Yu R C, Xu Y P, Zhou T J, et al. 2007b. Relation between rainfall duration and diurnal variation in the warm season precipitation over central eastern China[J]. Geophys Res Lett, 34(13):173-180.
[12]Bai Aijuan, Liu Changhai, Liu Xiaodong. 2008. Diurnal variation of summer rainfall over the Tibetan Plateau and its neighboring regions revealed by TRMM multi-satellite precipitation analysis[J]. Chinese J Geophys, 51(3):704-714.<br/>白爱娟, 刘长海, 刘晓东. 2008. TRMM多卫星降水分析资料揭示的青藏高原及其周边地区夏季降水日变化[J].地球物理学报, 51(3):704-714.
[13]Cheng Zhigang, Liu Xiaodong, Fan Guangzhou, et al. 2011. Spatiotemporal distribution of climate change over the Qinghai-Tibetan Plateau in 21st century[J]. Arid Zone Research, 28(4):669-676.<br/>程志刚, 刘晓东, 范广洲, 等. 2011.世纪青藏高原气候时空变化评估[J].干旱区研究, 28(4):669-676.
[14]Chu Duo, Yang Yong, Luobu Jiansen, et al. 2016. Applicability analysis of MERRA surface air temperature over the Qinghai-Xizang Plateau[J]. Plateau Meteor, 35(2):337-350. DOI:10. 7522/j. issn. 1000-0534. 2015. 00018.<br/>除多, 杨勇, 罗布坚参, 等. 2016. MERRA再分析地面气温产品在青藏高原的适用性分析[J].高原气象, 35(2):337-350.
[15]Dai Zejun, Yu Rucong, Li Jian, et al. 2011. The characteristics of summer precipitation diurnal variations in three reanalysis datasets over China[J]. Meteor Mon, 37(1):21-30.<br/>戴泽军, 宇如聪, 李建, 等. 2011.三套再分析资料的中国夏季降水日变化特征[J].气象, 37(1):21-30.
[16]Fu Baopu. 1992. The effects of topography and elevation on precipitation[J]. Acta Geographica Sinica, 47(4):302-314.<br/>傅抱璞. 1992.地形和海拔高度对降水的影响[J].地理学报, 47(4):302-314.
[17]Lu Heli, Shao Quanqin, Liu Jiyuan, et al. 2007. Temporo-spatial distribution of summer precipitation over Qinghai-Tibet Plateau during the last 44 years[J]. Acta Geographica Sinica, 62(09):946-958.<br/>卢鹤立, 邵全琴, 刘纪远, 等. 2007.近44年来青藏高原夏季降水的时空分布特征[J].地理学报, 62(9):946-958.
[18]Mao Jiangyu, Wu Guoxiong. 2012. Diurnal variations of summer precipitation over the Asian monsoon region as revealed by TRMM satellite data[J]. Sci China Earth Sci, 42(4):564-576.<br/>毛江玉, 吴国雄. 2012.基于TRMM卫星资料揭示的亚洲季风区夏季降水日变化[J].中国科学:地球科学, 42(4):564-576.
[19]Pan Yang, Shen Yan, Yu Jingjing, et al. 2012. Analysis of the combine gauge-satellite hourly precipitation over China based on the OI technique[J]. Acta Meteor Sinica, 70(6):1381-1389.<br/>潘旸, 沈艳, 宇婧婧, 等. 2012.基于最优插值方法分析的中国区域地面观测与卫星反演小时降水融合实验[J].气象学报, 70(6):1381-1389.
[20]Qi Wenwen, Zhang Baiping, Pang Yu, et al. 2013. TRMM-Data-Based spatial and seasonal patterns of precipitation in the Qinghai-Tibet Plateau[J]. Acta Geographica Sinica, 33(8):999-1005.<br/>齐文文, 张百平, 庞宇, 等. 2013.基于TRMM数据的青藏高原降水的空间和季节分布特征[J].地理科学, 33(8):999-1005.
[21]Shen Peifeng, Zhang Yaocun. 2011. Numerical simulation of diurnal variation of summer precipitation in Sichuan Basin[J]. Plateau Meteor, 30(4):860-868.<br/>沈沛丰, 张耀存. 2011.四川盆地夏季降水日变化的数值模拟[J].高原气象, 30(4):860-868.
[22]Shen Yan, Pan Yang, Yu Jingjing, et al. 2013. Quality assessment of hourly merged precipitation product over China[J]. Trans Atmos Sci, 36(1):37-46.<br/>沈艳, 潘旸, 宇婧婧, 等. 2013.中国区域小时降水量融合产品的质量评估[J].大气科学学报, 36(1):37-46.
[23]Yu Jingjing, Shen Yan, Pan Yang, et al. 2013. Improvement of satellite-based precipitation estimates over China based on probability density function matching method[J]. J Appl Meteor Sci, 24(5):544-553.<br/>宇婧婧, 沈艳, 潘旸, 等. 2013.概率密度匹配法对中国区域卫星降水资料的改进[J].应用气象学报, 24(5):544-553.
[24]Xiao Linhong, Gao Yanhong, Chen Fei, et al. 2016. Dynamic downscaling simulation of extreme temperature indices over the Qinghai-Xizang Plateau[J]. Plateau Meteor, 35(3):574-589. DOI:10. 7522/j. issn. 1000-0534. 2016. 0039.<br/>肖林鸿, 高艳红, Chen Fei, 等. 2016.青藏高原极端气温的动力降尺度模拟[J].高原气象, 35(3):574-589.
[25]Xu Guoqiang, Zhu Qiangen, Bai Huzhi. 2003. Rainfall features of the Tibetan Plateau and LFO influence on low frequency precipitation in the Yangtze River Basin[J]. Scientia Meteor Sinica, 23(3):282-291.<br/>徐国强, 朱乾根, 白虎志. 2003. 1998年青藏高原降水特征及大气LFO对长江流域低频降水的影响[J].气象科学, 23(3):282-291.
[26]Yu Wenyong, Li Jian, Yu Rucong. 2012. Analyses of seasonal variation characteristics of the rainfall duration over China[J]. Meteor Mon, 38(4):392-401.<br/>于文勇, 李建, 宇如聪. 2012.中国地区降水持续性的季节变化特征[J].气象, 38(4):392-401.
[27]Yu Rucong, Li Jian, Chen Haomin, et al. 2014. Progress in studies of the precipitation diurnal variation over contiguous China[J]. Acta Meteor Sinica, 72(5):948-968. DOI:10. 11676/qxxb2014. 047.<br/>宇如聪, 李建, 陈昊明, 等. 2014.中国大陆降水日变化研究进展[J].气象学报, 72(5):948-968.
[28]Yuan Weihua, Yu Rucong, Fu Yunfei. 2014. Study of different diurnal variations of summer long-duration rainfall between the southern and northern parts of the Huai River[J]. Chinese Journal of Geophysics, 57(3):752-759. DOI:10. 6038/cjg20140306.<br/>原韦华, 宇如聪, 傅云飞. 2014.中国东部夏季持续性降水日变化在淮河南北的差异分析[J].地球物理学报, 57(3):752-759.
[29]Zhang Meng, Huang An'ning, Ji Xiaolong, et al. 2016. Validation of satellite precipitation products over Qinghai-Xizang Plateau region[J]. Plateau Meteor, 35(1):34-43. DOI:10. 7522/j. issn. 1000-0534. 2014. 00152.<br/>张蒙, 黄安宁, 计晓龙, 等. 2016.卫星反演降水资料在青藏高原地区的适用性分析[J].高原气象, 35(1):34-42.
文章导航

/