论文

青藏高原臭氧谷的分布及其与太阳辐射的关系

  • 焦铂洋 ,
  • 苏昱丞 ,
  • 郭胜利 ,
  • 郭栋 ,
  • 施春华 ,
  • 李婧媛 ,
  • 苍中亚 ,
  • 傅帅
展开
  • 空间天气研究所/南京信息工程大学数学与统计学院, 南京 210044;福建省气象培训中心, 福州 350007;南京信息工程大学气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/气象灾害预报预警与评估协同创新中心, 南京 210044;中国科学院国家天文台, 北京 100012

收稿日期: 2016-06-23

  网络出版日期: 2017-10-28

基金资助

国家自然科学基金项目(61573193, 91537213, 41305039, 41675039);江苏高校优势学科建设工程项目(PAPD)

Distribution of Ozone Valley and Its Relationship with Solar Radiation over the Qinghai-Tibetan Plateau

  • JIAO Boyang ,
  • SU Yucheng ,
  • GUO Shengli ,
  • GUO Dong ,
  • SHI Chunhua ,
  • LI Jingyuan ,
  • CANG Zhongya ,
  • FU Shuai
Expand
  • Institute of Space Weather/School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China;Training Center of Fujian Meteorology, Fuzhou 350007, China;Nanjing University of Information Science and Technology Key Laboratory of Meteorological Disaster, Ministry of Education(KLME)/Joint International Research Laboratory of Climate and Environment Change(ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters(CIC-FEMD), Nanjing 210044, China;National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China

Received date: 2016-06-23

  Online published: 2017-10-28

摘要

使用2005-2015年夏季Aura卫星微波临边探测器(MLS)逐日臭氧观测资料, 讨论了夏季青藏高原臭氧低值区的三维分布。研究发现, 青藏高原臭氧不仅在对流层顶附近存在着臭氧低值区, 而且在平流层上层(20~1 hPa)也存在显著的低值区。高原区上空50%以上的臭氧存在于21.5~1.2 hPa的范围内, 因此平流层上层高原臭氧低值对高原臭氧谷来说也很重要。使用合成分析法对MLS夏季北半球昼夜臭氧进行研究, 结果表明该低值区仅存在于白天。根据高原区平流层上层臭氧模拟数据的集合经验模态分解, 得到IMF4的平均频率为0.09, 平均周期为11.1年, 正好对应太阳活动最强的周期。说明太阳辐射是影响高原平流层上层臭氧低值中心的一个因素。

本文引用格式

焦铂洋 , 苏昱丞 , 郭胜利 , 郭栋 , 施春华 , 李婧媛 , 苍中亚 , 傅帅 . 青藏高原臭氧谷的分布及其与太阳辐射的关系[J]. 高原气象, 2017 , 36(5) : 1201 -1208 . DOI: 10.7522/j.issn.1000-0534.2016.00106

Abstract

Using Aura satellite 10 years (2005-2015) summer (from June to August) microwave limb sounder (MLS) daily ozone observation data, the three-dimensional distribution of the core of ozone valley over the Qinghai-Tibetan Plateau in summer is analyzed.The results show that the ozone valley in the Qinghai-Tibetan Plateau is not only in the tropopause, but also in the upper stratosphere (20~1 hPa).More than 50% of the ozone over the plateau is in the range of 21.5~1.2 hPa, so for ozone valley upper stratospheric ozone plateau low plateau is also very important.Then by using synthetic analysis method, MLS ozone in the Northern Hemisphere summer day and night were compared, and we can see there is a core of ozone valley on the plateau during the day.Next, by using Ensemble Empirical Mode Decomposition (EEMD) to process total ozone analog data in the Plateau, the average frequency of IMF4 is 0.09, that is to say the average period is 11.1 years, exactly correspond to the strongest solar activity cycle.So solar activity is a factor for the core of ozone valley in the plateau upper stratosphere.

参考文献

[1]Bian J C, Yan R C, Chen H B, et al. 2011. Formation of the summertime ozone valley over the Tibetan Plateau:The Asian summer monsoon and air column variations[J]. Adv Atmos Sci, 28(6):1318-1325. DOI:10. 1007/s00376-011-0174-9.
[2]Collins W D, Rasch P J, Boville B A, et al. 2004. Desciption of the NCAR community atmosphere model (CAM3. 0)[J]. National Center for Atmospheric Research Ncar Koha Opencat, tn-464+str(TN-485+STR).
[3]Guo D, Wang P X, Zhou X J, et al. 2012. Dynamic effects of the south Asian high on the ozone valley over the Tibetan Plateau[J]. Acta Meteor Sinica, 26(2):216-228. DOI:10. 1007/s13351-012-0207-2.
[4]Li Z K, Qin H, Guo D, et al. 2017. Impact of Ozone Valley over the Tibetan on South Asian High in CAM5[J]. Adv Meteorol, in press.
[5]Liu Y, Li W L, Zhou X J, et al. 2003. Mechanism of formation of the ozone valley over the Tibetan Plateau in summer-transport and chemical process of ozone[J]. Adv Atmos Sci, 20(1):103-109. DOI:10. 1007/BF03342054.
[6]Livesey N J, Read W G, Froidevaux L, et al. 2011. EOS MLS version 3. 3 level 2 data quality and description document report[R]. Jet Propulsion Laboratory.
[7]Marsh D R, Garcia R R, Kinnison D E, et al. 2007. Modeling the whole atmosphere response to solar cycle changes in radiative and geomagnetic forcing[J]. J Geophys Res Atmos, 112(D23):6033-6044. DOI:10. 1029/2006JD008306.
[8]Tian W S, Chipperfield M, Huang Q. 2008. Effects of the Tibetan Plateau on total column ozone distribution[J]. Tellus B, 60(4):622-635. DOI:10. 1111/j. 1600-0889. 2008. 00338. x.
[9]Ye Z J, Xu Y F. 2003. Climate characteristics of ozone over Tibetan Plateau[J]. J Geophys Res, 108(D20):1-15. DOI:10. 1029/2002JD003139.
[10]Zhang J K, Tian W S, Xie F, et al. 2014. Climate warming and decreasing total column ozone over the Tibetan Plateau during winter and spring[J]. Tellus Series B-Chemical and Physical Meteorology, 66(8):136-140. DOI:10. 3402/tellusb. v66. 23415.
[11]Zhang F, Hou C, Li J N, et al. 2017. A simple parameterization for the height of maximum ozone heating rate[J]. Infrared Phys Technol, accept.
[12]Zou H, Gao Y Q. 1997. Vertical ozone profile over Tibet using sage Ⅰ and Ⅱ data[J]. Adv Atmos Sci, 14(4):505-512. DOI:10. 1007/s00376-997-0068-z.
[13]Zou H, Ji C P, Zhou L B. 2000. QBO signal in total ozone over Tibet[J]. Adv Atmos Sci, 17(4):562-568. DOI:10. 1007/s00376-000-0019-4.
[14]Zou H. 1996. Seasonal variation and trends of TOMS ozone over tibet[J]. Geophys Res Lett, 23(9):1029-1032. DOI:10. 1029/96GL00767.
[15]Bian Jianchun, Yan Renchang, Chen Hongbin. 2011. Tropospheric pollutant transport to the stratosphere by Asian summer monsoon[J]. Chinese J Atmos Sci, 35(5):897-902. DOI:10. 3878/j. issn. 1006-9895. 2011. 05. 09.<br/>卞建春, 严仁嫦, 陈洪滨. 2011.亚洲夏季风是低层污染物进入平流层的重要途径[J].大气科学, 35(5):897-920.
[16]Chen Bin, Shi Xiaohui, Xu Xiangde, et al. 2011. Characteristics of troposphere stratosphere transports over Asian monsoon region in summer based on Aura-MLS data[J]. Plateau Meteor, 30(1):65-73.<br/>陈斌, 施晓晖, 徐祥德, 等. 2011.利用卫星大气成分资料分析夏季亚洲季风区平流层-对流层输送特征[J].高原气象, 30(1):65-73.
[17]Chen Chuang, Tian Wenshou, Tian Hongying, et al. 2012. Vertical distribution of ozone and stratosphere-troposphere exchanges on the northeastern side of Tibetan Plateau[J]. Plateau Meteor, 31(2):295-303.<br/>陈闯, 田文寿, 田红瑛, 等. 2012.青藏高原东北侧臭氧垂直分布与平流层-对流层物质交换[J].高原气象, 31(2):295-303.
[18]Cong Chunhua, Li Weiliang, Zhou Xiuji. 2001. Mass exchange between the stratosphere and troposphere over the Tibetan Plateau and its adjacent regions[J]. Chinese Sci Bull, 46(22):1914-1918. DOI:10. 3321/j. issn:0023-074X. 2001. 22. 017.<br/>丛春华, 李维亮, 周秀骥. 2001.青藏高原及其邻近地区上空平流层-对流层之间大气的质量交换[J].科学通报, 46(22):1914-1918.
[19]Fu Chao, Li Weiliang. 1997. Simulation experiment on the formation of ozone low value area over the Tibetan Plateau in summer[C] Zhou Xiuji. eds. Effects of atmospheric ozone variation on Chinese climate and environment (two). Beijing:China Meteorological Press, 274-285.<br/>付超, 李维亮. 1997. 夏季青藏高原上空臭氧总量低值区形成的模拟试验[C]周秀骥编著. 中国地区大气臭氧变化及其对气候环境的影响(二). 北京: 气象出版社, 274-285.
[20]Guo Dong, Zhou Xiuji, Liu Yu, et al. 2012. The dynamic effects of the south Asian high on the ozone valley over the Tibetan Plateau[J]. Acta Meteor Sinica, 70(6):1302-1311. DOI:10. 11676/qxxb2012. 109.<br/>郭栋, 周秀骥, 刘煜, 等. 2012.南亚高压对青藏高原臭氧谷的动力作用[J].气象学报, 70(6):1302-1311.
[21]Guo Dong, Xu Jianjun, Su Yuchen, et al. 2017. Comparison of vertical structure and formation mechanism of summer ozone valley over the Tibetan Plateau and North America[J]. Trans Atmos Sci, 40(3):412-417.<br/>郭栋, 徐建军, 苏昱丞, 等. 2017.青藏高原和北美夏季臭氧谷垂直结构和形成机制的比较[J].大气科学学报, 40(3):412-417.
[22]Jiang Qiongfei, Guo Shengli, Liang Haowen, et al. 2015. Research of EASM decadal variation characteristics based on the EMD method and the relationship with solar activity[J]. Chinese J Space Sci, 35(1):50-55. DOI:10. 11728/cjss2015. 01. 050.<br/>姜琼妃, 郭胜利, 梁浩文, 等. 2015.基于EMD的东亚夏季风年代际变化特征及与太阳活动的关系[J].空间科学学报, 35(1):50-55.
[23]Li Shubo, Wu Tongwen, Zhang Jie, et al. 2015. Simulation study about climatological basic state and seasonal variations of global O<sub>3</sub> in the 20<sup>th</sup> century[J]. Plateau Meteor, 34(6):1601-1615. DOI:10. 7522/j. issn. 1000-0534. 2014. 00119.<br/>李书博, 吴统文, 张洁, 等. 2015. BCC-AGCM-Chem0模式对20世纪全球O<sub>3</sub>气候平均态及季节变化特征的模拟研究[J].高原气象, 34(6):1601-1615.
[24]Liu Yu, Li Weiliang, Zhou Xiuji. 2010. A possible effect of heterogeneous reactions on the formation of the ozone valley over the Tibetan Plateau[J]. Acta Meteor Sinica, 68(6):836-846. DOI:10. 11676/qxxb2010. 079.<br/>刘煜, 李维亮, 周秀骥. 2010.非均相化学过程在青藏高原臭氧低谷形成中的作用[J].气象学报, 68(6):836-846.
[25]Shi Chunhua, Chen Yuejuan, Zheng Bin, et a1. 2010. A comparison with the contribution of dynamics and chemistry in ozone'seasonal variation in the stratosphere[J]. Chinese J Atmos Sci, 34(2):399-406. DOI:10. 3878/j. issn. 1006-9895. 2010. 02. 13.<br/>施春华, 陈月娟, 郑彬, 等. 2010.平流层臭氧季节变化的动力和光化学作用之比较[J].大气科学, 34(2):399-406.
[26]Su Yucheng, Guo Dong, Guo Shengli, et al. 2016. Ozone trends over the Tibetan Plateau in the next 100 Years and their possible mechanism[J]. Trans Atmos Sci, 39(3):309-317. DOI:10. 13878/j. cnki. dqkxxb. 20140925002.<br/>苏昱丞, 郭栋, 郭胜利, 等. 2016.未来百年夏季青藏高原臭氧变化趋势及可能机制[J].大气科学学报, 39(3):309-317.
[27]Shi Renrui, Zhou Shunwu, Sun Jihua, et al. 2017. On variation features of total ozone depletion over the Tibetan Plateau and its responds to solar activity[J]. Journal of Yunnan University (Natural Science), 39(1):78-87.<br/>仕仁睿, 周顺武, 孙绩华, 等. 2017.青藏高原臭氧亏损变化及其对太阳活动的响应[J].云南大学学报(自然科学版), 39(1):78-87.
[28]Wang Zijun, Chen Shengbo, Lü Hang, et al. 2010. Conversion on different dimensions of atmospheric ozone[J]. J Meteor Environ, 26(2):63-67. DOI:10. 3969/j. issn. 1673-503X. 2010. 02. 012.<br/>汪自军, 陈圣波, 吕航, 等. 2010.大气臭氧不同量纲之间的转换[J].气象与环境学报, 26(2):63-67.
[29]Wan Lingfeng, Guo Dong, Liu Renqiang, et al. 2017. Valuation of the WACCM3 performance on simulation of the double core of ozone valley over the Qinghai-Xizang Plateau in summer[J]. Plateau Meteor, 36(1):57-66. DOI:10.7522/j.issn.1000-0534.2016.00004.<br/>万凌峰, 郭栋, 刘仁强, 等. 2017. WACCM3对夏季青藏高原臭氧谷的双心结构的模拟性能评估[J].高原气象, 36(1):57-66.
[30]Wang Weiguo, Liang Junping, Wang Yingyue, et al. 2010. Comparative study on mass and ozone fluxes cross tropopause over Qinghai-Xizang Plateau and its surrounding areas[J]. Plateau Meteor, 29(3):554-562.<br/>王卫国, 梁俊平, 王颢樾, 等. 2010.青藏高原及附近区域穿越对流层顶的质量和臭氧通量研究[J].高原气象, 29(3):554-562.
[31]Wang Wen, Ren Ran, Li Yaohui. 2014. Summer rainfall prediction in the upper and middle reaches of the Yellow River with EEMD method[J]. J Meteor Sci, 34(3):261-266. DOI:10. 3969/2014jms. 0004.<br/>王文, 任冉, 李耀辉. 2014.基于EEMD的黄河中上游夏季降水预报方法的研究[J].气象科学, 34(3):261-266.
[32]Zhang Fang, Wu Tongwen, Zhang Jie, et al. 2016. Variations of tropospheric ozone in the 20th century sinmulated by BCC-ACGM-Chem0 model[J]. Plateau Meteor, 35(1):158-171. DOI:10.7552/j.issn.1000-0534, 2014, 00118.<br/>张芳, 吴统文, 张洁, 等. 2016. BCC-AGCM-Chem0模式对20世纪对流层臭氧变化趋势的模拟研究[J].高原气象, 35(1):158-171.
[33]Zhou Shunwu, Yang Shuangyan, Zhang Renhe, et al. 2012. Possible causes of total ozone depletion over the Qinghai-Xizang Plateau and its relation to troposphere height in recent 30 years[J]. Plateau Meteor, 31(6):1471-1478.<br/>周顺武, 杨双艳, 张人禾, 等. 2012.近30年青藏高原臭氧总量亏损的可能原因及其与对流层顶高度的联系[J].高原气象, 31(6):1471-1478.
[34]Zhou Xiuji, Li Weiliang, Chen Longxun, et al. 2004. Study of ozone change over Tibetan Plateau[J]. Acta Meteor Sinica, 62(5):513-527. DOI:10. 11676/qxxb2004. 053.<br/>周秀骥, 李维亮, 陈隆勋, 等. 2004.青藏高原地区大气臭氧变化的研究[J].气象学报, 62(5):513-527.
[35]Zhou Xiuji, Shi Jiuen. 1995. Variation of total ozone over China and ozone low center over the Tibetan Platea[J]. Chinese Sci Bull, 40(15):1396-1398.<br/>周秀骥, 史久恩. 1995.中国地区臭氧总量变化与青藏高原低值中心[J].科学通报, 40(15):1396-1398.
文章导航

/