论文

科尔沁地区年降水波动与空间分异特征

  • 孟庆兰 ,
  • 赵赫 ,
  • 高军凯 ,
  • 卢筱茜 ,
  • 刘良旭 ,
  • 常学礼
展开
  • 鲁东大学资源与环境工程学院, 烟台 264025;中国科学院西北生态环境资源研究院, 兰州 730000

收稿日期: 2016-08-24

  网络出版日期: 2017-10-28

基金资助

国家重点基础研究发展计划(973)项目(2013CB429902)

Differentiation Characteristic of the Annual Precipitation Pulse in Kerqin Sandy Land Region

  • MENG Qinglan ,
  • ZHAO He ,
  • GAO Junkai ,
  • LU Xiaoqian ,
  • LIU Liangxu ,
  • CHANG Xueli
Expand
  • College of resource and environmental engineering, Ludong University, Yantai 264025, China;Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China

Received date: 2016-08-24

  Online published: 2017-10-28

摘要

降水波动是气候变化研究的主要内容之一, 同时是一个环境变化的重要指标和植被生产力预测的首选因素。本文以科尔沁地区18个气象观测站点1961-2015年逐日降水数据为基础, 根据多年平均降水量将科尔沁地区划分为4个区, 分别为Ⅰ、Ⅱ、Ⅲ和Ⅳ区, 并且综合运用小波分析方法, 分析了科尔沁地区近55年来降水变化的时空特征。研究表明, 在统计学特征上Ⅰ、Ⅱ、Ⅲ和Ⅳ区在研究期内年均降水量分别为337.4±76 mm、369.2±73.2 mm、422.6±68.8 mm和483.4±97.1 mm, 波动空间分异特征主要表现在降水量从东南(Ⅳ区)到西北(Ⅰ区)逐渐减少, 变化趋势逐渐复杂;从降水年代际变化特征来看, 降水距平值增加时Ⅰ区降水距平百分比最大, 为12.95%;降水距平值减小时Ⅰ区偏离平均值最大, 距平百分比为-19.26%。从小波分析结果来看, 降水量年际波动存在多个主周期, 其中最显著的周期为5~11年和23~32年, 且从东南到西北其周期震荡性逐渐减弱, 周期变化时间缩短。从周期性的强弱来看, 在具有共性23~32年周期内, 26~32年时间尺度模值较大, 说明该时段是降水量周期变化较明显时期;5~11年时间尺度的周期变化次之, 其他时间尺度的周期性变化较小。从空间分区的小波方差分析结果来看, Ⅰ、Ⅱ、Ⅲ区的降水主周期在10~11年之间, 而Ⅳ区为25年, 说明科尔沁地区在年降水量小于450 mm的区域降水波动特点一致, 大于此值则变化规律明显不同。从年降水量多-少的周期性变化规律可以推测, 科尔沁地区在2016-2020年期间将一直处于降水偏少期。

本文引用格式

孟庆兰 , 赵赫 , 高军凯 , 卢筱茜 , 刘良旭 , 常学礼 . 科尔沁地区年降水波动与空间分异特征[J]. 高原气象, 2017 , 36(5) : 1234 -1244 . DOI: 10.7522/j.issn.1000-0534.2016.00114

Abstract

Annual precipitation pulse is one of the principal factors in climatic change research.It is not only an important indicator of that, but also a dominant factor for vegetation production prediction.In order to realize the recognition of the annual precipitation pulse characteristics, the research focused on the Morlet wavelet analysis method to analyze the temporal and spatial change based on eighteen meteorological station data during past decades in Kerqin sandy land region.The results showed that the annual precipitation were 337.4±76 mm, 369.2±73.2 mm, 422.6±68.8 mm and 483.4±97.1 mm in Ⅰ, Ⅱ, Ⅲ and Ⅳ sub-area during study period, respectively.The characteristics were gradually decreased from the southeast (Ⅳ sub-area) to the northwest (Ⅰ sub-area) in spatial scale and the complexity enhanced in temporal scale.On the aspects of interdecadal mean precipitation, the Ⅰ sub-area had the maximum percentage as 12.95% when the precipitation increased and the minimum percentage as -19.26% when the precipitation decreased.In addition, the Morlet wavelet analysis showed that there were double significant milt-temporal changing periods of 5~11 years and 23~32 years, and oscillation period was weak gradually in the above mentioned spatial scale and the periodic duration was gradually decreased simultaneously.However, the periodic intensity was more in 23~32 years than in 5~11 years and the most modulus value emerged in 26~32 years among 23~32 period, which indicated the precipitation periodic changed most significantly in this period.There were rest temporal scale periods too, but had less periodic change.Due to sub-area's wavelet variance results, we also indicated that Ⅰ, Ⅱ and Ⅲ sub-area had same dominant period at 10~11 year cycle and Ⅳ sub-area emerged at 25 years.So, it could be concluded that the regional precipitation fluctuation characteristics had same regime when annual precipitation is less than 450 mm and the regime was significantly different when the annual precipitation is more than 450 mm.According to the period oscillation change trait of the annual precipitation, we also predicted that the precipitation could be less than normal from 2016 to 2020 in Kerqin sandy land region.

参考文献

[1]Ehleringer J R, Phillips S L. 1991. Differential utilization of summer rains by desert plants[J]. Oecologia, 88(3):430-434.
[2]Ehleringer J R, Schwinning S. 2000. Water use in arid land ecosystems[J]. Physiological Plant Ecology, 347-365.
[3]Gao Q, Reynolds J F. 2003. Historical shrub-grass transitions in the northern Chihuahuan Desert:modeling the effects of shifting rainfall seasonality and event size over a landscape gradient[J]. Global Change Biology, 9:1475-1493.
[4]Goutorbe J P, Lebel P. 1997. An overview of HAPEX-Sahel:A study in climate and desertification[J]. J Hydrol, 188:4-17.
[5]Hamerlynck E P, Scott R L, Stone J J. 2012. Soil moisture and ecosystem cover to a saturating precipitation pulse[J]. Ecohydrology, 5(3):297-305.
[6]Knapp A K, Fay P A. 2002. Rainfall variability, carbon cycling, and plant species diversity in a Mesic Grassland[J]. Science, 298 (5601):2202-2205.
[7]Loik M E, Sbreshear D D. 2004. A multi-scale perspective of water pulses in dryland ecosystems:climatology and ecohydrology of the western USA[J]. Oecologia, 141(2):269-281.
[8]Lu L, Li X, Cheng G D. 2003. Landscape evolution in the middle Heihe River Basin of north-west China during the last decade[J]. J Arid Environ, 53(3):395-408.
[9]Mohammad J B, Howard G. 2006. Competition for pulsed resources:an experimental study of establishment and coexistence for an arid-land grass[J]. Oecologia, 148(4):555-563.
[10]Noy-meir I. 1973. Desert ecosystems:environment and producers[J]. Annual Review of Ecologyand Systematics, (4):25-51.
[11]Reichmann L G, Sala O E, Peters D P C. 2013. Precipitation legacies in desert-grassland primary production occur through previous-year tiller density[J]. Ecology, 94(2):435-443.
[12]Reynolds J F, Kemp P R, Ogle K, et al. 2004. Modifying the "pulse-reserve" paradigm for deserts of North America:precipitation pulses, soil water, and plant responses[J]. Oecologia, 141(2):194-210.
[13]Rodriguez I I, Porporato A, Ridolfi L, et al. 1999. Probabilistic modeling of water balance at a point:the role of climate, soil and vegetation[J]. Proc Roy Soc London, 455(1990):3789-3805.
[14]Ryel R J, Leffler A J, Peek M S, et al. 2004. Water conservation in Artemisia tridentate through redistribution of precipitation[J]. Oecologia, 141(2):335-345.
[15]Sala O E, Lauenroth W K. 1982. Small rainfall events:an ecological role in semiarid regions[J]. Oecologia, 53(3):301-304.
[16]Schwinning S, Benjamin I S. 2003. Dominant cold desert plants do not partition warm season precipitation by event size[J]. Oecologia, 136(2):252-260.
[17]Schwinning S, Sala O E. 2004. Thresholds, memory, and seasonality:understanding pulse dynamics in arid/semi-arid ecosystems[J]. Oecologia, 141(2):191-193.
[18]Smith S D, Anderson J E. 1997. Physiological ecology of North American desert plants[M]. Springer, Berlin Heidelberg, New York. DOI:10. 1007/978-3-642-59212-6.
[19]Synder K A, Tartowski S L. 2006. Multi-scale temporal variation in water availability:Implications for vegetationdynamics in arid and semi-arid ecosystems[J]. J Arid Environ, 65(2):219-234.
[20]Xu Z X, Li J Y, Liu C M. 2007. Long-term trend analysis for major climate variables in the Yellow River basin[J]. Hydrological Processes, 21:1935-1948.
[21]Yang Y H, Tian F. 2009. Abrupt change of runoff and its major driving factors in Haihe River Catchment, China[J]. J Hydrol, 374:373-383.
[22]Ding Ting, Chen Lijuan, Cui Dahai. 2015. Decadal variations of summer precipitation in Northeast China and the associated circulation[J]. Plateau Meteor, 34(1):220-229. DOI:10. 7522/j. issn. 1000-0534. 2013. 00155.<br/>丁婷, 陈丽娟, 崔大海. 2015.东北夏季降水的年代际特征及环流变化[J].高原气象, 34(1):220-229.
[23]Fu Rui, Wei Zhigang, Wen Jun, et al. 2008. Analyses on characteristic of seasonal and interannual variation of difference between surface and air temperature (Ts-Ta) in arid region in Northwest China[J]. Plateau Meteor, 27(4):844-851.<br/>符睿, 韦志刚, 文军, 等. 2008.西北干旱区地气温差季节和年际变化特征的分析[J].高原气象, 27(4):844-851.
[24]Li Dongliang, Shao Pengcheng, Wang Hui, et al. 2013. Advances in research of the north boundary belt of East Asia subtropical summer monsoon in China[J]. Plateau Meteor, 32(1):305-314. DOI:10. 7522/j. issn. 1000-0534. 2012. 00030.<br/>李栋梁, 邵鹏程, 王慧, 等. 2013.中国东亚副热带夏季风北边缘带研究进展[J].高原气象, 32(1):305-314.
[25]Li Miao, Xia Jun, Chen Sheming, et al. 2011. Wavelet analysis on annual precipitation around 300 years in Beijing area[J]. Journal of Natural Resources, 26(6):1001-1011.<br/>李淼, 夏军, 陈社明, 等. 2011.北京地区近300年降水变化的小波分析[J].自然资源学报, 26(6):1001-1011.
[26]Liu Xinping, He Yuhui, Zhao Xueyong, et al. 2011. Characteristics of precipitation in Naiman region of Horqin Sandy Land[J]. Reaearch of Soil and Water Conservation, 18(2):155-158.<br/>刘新平, 何玉惠, 赵学勇, 等. 2011.科尔沁沙地奈曼地区降水变化特征分析[J].水土保持研究, 18(2):155-158.
[27]Lü Shihai, Liu Jidong, Zheng Zhirong, et al. 2015. Effects of the annual precipitation on primary productivity in Hulunbeier Meadow-Steppe[J]. Res Environ Sci, 28(4):550-558.<br/>吕世海, 刘及东, 郑志荣, 等. 2015.降水波动对呼伦贝尔草甸草原初级生产力年际动态影响[J].环境科学研究, 28(4):550-558.
[28]Shao Xiaomei, Xu Yueqin, Yan Changrong. 2006. Wavelet analysis of rainfall variation in the Yellow River Basin[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 42(4):503-509.<br/>邵晓梅, 许月卿, 严昌荣. 2006.黄河流域降水序列变化的小波分析[J].北京大学学报(自然科学版), 42(4):503-509.
[29]Wang Liqun, Li Chongyin, Tan Yanke, et al. 2010. Study on time-spacial changes and sudden characteristic of winter Mongolia high[J]. Plateau Meteor, 29(1):23-32.<br/>王力群, 李崇银, 谭言科, 等. 2010.冬季蒙古高压的时空变化和突变特征研究[J].高原气象, 29(1):23-32.
[30]Yao Shuxia, Zhang Tonghui, Zhao Chuancheng. 2014. Multiple-time-scale analysis on precipitation in Naiman Banner of Horqin Sandy Land in 1970-2010[J]. J Desert Res, 34(2):542-549.<br/>姚淑霞, 张铜会, 赵传成. 2014.科尔沁沙地奈曼旗1970-2010年降水的多时间尺度分析[J].中国沙漠, 34(2):542-549.
[31]Yu Yansheng, Chen Xingwei. 2011. Study on the precipitation of trend component in a hydrological time series based on Mann-Kendall method[J]. Journal of Natural Resources, 28(4):550-558.<br/>于延胜, 陈兴伟. 2011.基于Mann-Kendall法的水文序列趋势成分比重研究[J].自然资源学报, 26(9):1585-1591.
[32]Zhao Wei, Wei Zhigang, Zheng Zhiyuan, et al. 2016. Surface temperature and precipitation variation of pastoral transitional zone in Northern China during 1964-2013[J]. Plateau Meteor, 35(4):979-988. DOI:10. 7522/j. issn. 1000-0534. 2015. 00079.<br/>赵威, 韦志刚, 郑志远, 等. 2016. 1964-2013年中国北方农牧交错带温度和降水时空演变特征[J].高原气象, 35(4):979-988.
[33]Zhao Xueyong, Liu Liangxu, Wang Wei, et al. 2014. Impacts of precipitation change on desert-grassland vegetation productuvuty[J]. J Desert Res, 34(6):1486-1495.<br/>赵学勇, 刘良旭, 王玮, 等. 2014.降水波动对荒漠草原生产力的影响[J], 中国沙漠, 34(6):1486-1495.
文章导航

/