论文

乌拉尔山阻塞与北大西洋涛动的关系及其对中国冬季天气的影响

  • 肖贻青
展开
  • 陕西省气象台, 陕西 西安 710014

收稿日期: 2016-05-23

  网络出版日期: 2017-12-28

Relationship between Ural Blocking and the North Atlantic Oscillation and Their Influence on Winter Weather over China

  • XIAO Yiqing
Expand
  • Shaanxi Meteorological Observatory, Xi'an 710014, Shaanxi, China

Received date: 2016-05-23

  Online published: 2017-12-28

摘要

通过对2008年1-2月中国南方一次严重低温雨雪冰冻天气的分析,发现期间的两次乌拉尔山阻塞过程都对其有重要影响,且均伴随着北大西洋涛动正位相事件(North Atlantic Oscillation+,NAO+),但由于其发展演变位置的不同对中国的温度和降水造成了截然不同的影响。因此利用ERA-Interim再分析资料计算了1979-2014年冬季乌拉尔山阻塞的平均活动中心,将NAO+相关乌拉尔山阻塞根据位置变化分为偏北型、偏南型、偏东型和偏西型四类阻塞,研究其对中国冬季天气的影响。结果表明,偏南型和偏东型的乌拉尔山阻塞更容易引起中国冬季的异常降温;研究还发现与NAO+相关的乌拉尔山阻塞的发展演变总是滞后NAO+事件3~6天,其位置的变化主要受前期NAO+期间的纬向风异常分布及急流位置和强度的影响;另外,对1979-2014年冬季乌拉尔山阻塞和NAO的统计结果显示,绝大部分的乌拉尔山阻塞发生时伴随了NAO事件,NAO+期间比NAO负位相(North Atlantic Oscillation-,NAO-)期间更容易产生乌拉尔山阻塞,但伴随NAO-事件的阻塞强度更大,引起中国冬季的降温也更明显;进一步研究表明,单一的NAO事件期间引起中国冬季温度的变化非常微弱,因此,乌拉尔山阻塞可以作为NAO事件影响中国寒冷天气的媒介。

本文引用格式

肖贻青 . 乌拉尔山阻塞与北大西洋涛动的关系及其对中国冬季天气的影响[J]. 高原气象, 2017 , 36(6) : 1499 -1511 . DOI: 10.7522/j.issn.1000-0534.2016.00109

Abstract

A case study on persistent snow-ice weather over South China from January to February in 2008 was investigated. It is shown that two Ural blocking (UB) events that have important influence on this extreme cold weather for different location, are associated with positive North Atlantic Oscillation events (NAO+). So NAO+ related UB events (NAO+ UB) are classified to four patterns as a result of their different locations, according to statistical analysis for location of UB in winter from 1979 to 2014, which are northward, southward, eastward, and westward UB events. Composited analysis reveals that the influence of southward and eastward UB events on winter cold events over China is more intense than that of the northward and westward UB events. A further study shows the NAO+ UB events are lag the NAO+ events by 3~6 days for their different locations. The result shows that the variety of zonal wind anomalies over Ural regions may be the main cause that lead to different location for NAO+ UB at the occurrence condition of NAO+. Furthermore, a statistical result for UB events and NAO events in winter from 1979 to 2014 shows that most UB events can be associated with NAO events, especially NAO+ UB events are far more than NAO- related UB (NAO- UB), and NAO+ pattern is more in favore of UB events. Therefore, the intensity of NAO- UB is stronger than NAO+ UB, and lead to more intense cold weather over China. Moreover, it is shown that the impact of NAO+ and NAO- events being absent with UB events on winter air temperatures over China is extremely weak. This hints that the UB events may be a bridge that links the winter weather over China and NAO events.

参考文献

[1]Diao Y, Xie S, Luo D, 2014. Asymmetry of winter European surface air temperature extremes and the North Atlantic Oscillation[J]. J Climate, 28:517-530. DOI:10.1175/JCLI-D-13-00642.1.
[2]Dunkerton T J, 2000. Midwinter deceleration of the subtropical mesospheric jet and interannual variability of the high latitude flow in UKMO analysis[J]. J Atmos Sci, 57:3838-3855.
[3]Han Z, Li S L, Mu M, 2011. The Role of Warm North Atlantic SST in the formation of positive height anomalies over Ural Mountains during January 2008[J]. Adv Atmos Sci, 28(2):246-256.
[4]Hurrell J W, 1995. Decadal trends in the North Atlantic Oscillation:Regional temperature and precipitation[J]. Science, 269(5224):676-679.
[5]Kaas E, Branstator G, 1993. The relationship between a zonal index and blocking activity[J]. J Atmos Sci, 50:3061-3077.
[6]Luo D, Lupo A, Wan H, 2007. Dynamics of eddy-driven low frequency dipole modes. Part Ⅰ:A simple model of North Atlantic Oscillations[J]. J Atmos Sci, 64:3-38.
[7]Luo D, Yao Y, Feldstein S, 2014. Regime transition of the North Atlantic Oscillation and the extreme cold event in January-February 2012[J]. Mon Wea Rev, 142:4735-4757.
[8]Scaife A A, Folland C K, Alexander L V, et al, 2008. European climate extremes and the North Atlantic Oscillation[J]. J Climate, 21(1):72-83.
[9]Sillmann J, Croci-Maspoli M, 2009. Present and future atmospheric blocking and its impact on European mean and extreme climate[J]. Geophys Res Lett, 36(L10):L10702. DOI:10.1029/2009GL038259.
[10]Tibaldi S, Molteni F, 1990. On the operational predictability of blocking[J]. Tellus, 42A:343-365.
[11]Yang H, 2011. The significant relationship between the Arctic oscillation (AO) in December and the January climate over South China[J]. Adv Atmos Sci, 28(2):398-407.
[12]Zhou W, Chan J C L, Chen W, et al, 2009:Synoptic-scale controls of persistent low temperature and Icy weather over Southern China in January 2008[J]. Mon Wea Rev, 137.3798-3991.
[13]Ding Y H, Wang Z Y, Song Y F, et al, 2008. Causes of the unprecedented freezing disaster in January 2008 and its possible association with the global warming[J]. Acta Meteor Sinica, 66(5):808-825.<br/>丁一汇, 王遵娅, 宋亚芳, 等, 2008.中国南方2008年1月罕见低温雨雪冰冻灾害发生的原因及其气候变暖的关系[J].气象学报, 66(5):808-825.
[14]Fu J J, Li S L, Wang Y M, 2008. Influence of prior thermal state of global oceans on the formation of the disastrous snow storm in January 2008[J]. Climatic Environ Res, 13(4):478-490.<br/>付健健, 李双林, 王彦明, 2008.前期海洋热力状况异常影响2008年1月雪灾形成的初步研究[J].气候与环境研究, 13(4):478-490.
[15]Han Z, Li S L, 2013. Impact of Arctic sea ice on the high pressure over the Ural Mountains during January 2008[J]. Climatic Environ Res, 18(5):671-680.<br/>韩哲, 李双林, 2013.北极海冰对2008年1月乌拉尔高压异常的影响[J].气候与环境研究, 18(5):671-680.
[16]Li C, Zhang D Y, Feng M, et al, 2009. Analysis of synoptic characteristic of extremely low temperature and snow-ice weather in South China[J]. Torrential Rain and Disasters, 28(4):321-327.<br/>李灿, 张端禹, 冯明, 等, 2009.南方极端低温雨雪冰冻过程天气学特征分析[J].暴雨灾害, 28(4):321-327.
[17]Li L F, Liu Y M, Bo C Y, 2011. Impact of diabatic heating anomalies on an extreme snow event over South China in January 2008[J]. Climatic Environ Res, 16(2):126-136.<br/>李来芳, 刘屹岷, 卜昌郁, 2011.热源异常对2008年初中国南方低温雨雪天气的影响[J].气候与环境研究, 16(2):126-136.
[18]Peng Y, Wang Z, Liu A L, et al, 2010. Characteristics of the freezing rain/heavy snow process in South China and the anomalies of atmospheric circulation over East Asia in January 2008[J]. Trans Atmos Sci, 33(5):634-640.<br/>彭艳, 王钊, 刘安麟, 等, 2010.2008年1月中国南部低温雨雪冰冻天气特征及其与东亚大气环流异常探讨[J].大气科学学报, 33(5):634-640.
[19]Tan G R, Chen H S, Sun Z B, et al, 2010. Linkage of the cold event in January 2008 over China to the North Atlantic Oscillation and stratospheric circulation anomalies[J]. Chinese J Atmos Sci, 34(1):175-183.<br/>谭桂容, 陈海山, 孙照渤, 等, 2010.2008年1月中国低温与北大西洋涛动和平流层异常活动的联系[J].大气科学, 34(1):175-183.
[20]Wang D H, Liu C J, Liu Y, et al, 2008. A preliminary analysis of features and causes of the snow storm event over the Southern China in Junuary 2008[J]. Acta Meteor Sinica, 66(3):405-422.<br/>王东海, 柳崇建, 刘英, 等, 2008.2008年1月中国南方低温雨雪冰冻天气特征及其天气动力学成因的初步分析[J].气象学报, 66(3):405-422.
[21]Wang Y, Zhang Q Y, Peng J B, 2008. Relationship between the intraseasonal oscillation of East Asina monsoon circulation and the heavy snow over southern China in boreal winter of 2007/2008[J]. Cllimatic Environ Res, 13(4):459-467.<br/>王允, 张庆云, 彭京备, 2008.东亚冬季环流季节内振荡与2008年初南方大雪关系[J].气候与环境研究, 13(4):459-467.
[22]Xu H L, Li J P, Feng J, et al, 2012. The asymmctric relationship between the winter NAO and the precipitation in Southwest China[J]. Acta Meteor Sinica, 70(6):1276-1291.<br/>徐寒列, 李建平, 冯娟, 等, 2012.冬季北大西洋涛动与中国西南地区降水的不对称关系[J].气象学报, 70(6):1276-1291.
[23]Yang G M, Kong Q, Mao D Y, et al, 2008. Analysis of the long-lasting cryogenic freezing rain and snow weather in the beginning of 2008[J]. Acta Meteor Sinica, 66(5):836-849.<br/>杨贵明, 孔期, 毛冬艳, 等, 2008.2008年初"低温雨雪冰冻"灾害天气的持续性原因分析[J].气象学报, 66(5):836-849.
[24]Zhu H R, Liu H N, Zhang H L, et al, 2013. The relationship between MJO and snow disaster in the south of China in January of 2008[J]. J Meteor Environ, 29(4):77-83.<br/>朱红蕊, 刘赫男, 张洪玲, 等, 2013.热带大气季节内振荡与2008年初中国南方雪灾的关系[J].气象与环境学报, 29(4):77-83.
文章导航

/