论文

上海地区短历时强降水致灾阈值探索

  • 贺芳芳 ,
  • 杨涵洧 ,
  • 穆海振 ,
  • 徐卫忠 ,
  • 徐家良
展开
  • 上海市气候中心, 上海 200030

收稿日期: 2016-07-08

  网络出版日期: 2017-12-28

基金资助

公益性行业(气象)科研专项(GYHY201506014)

The Exploratory Research of Thresholds Value Causing Urban Waterlogging of Short Diachronic Strong Precipitation in Shanghai

  • HE Fangfang ,
  • YANG Hanwei ,
  • MU Haizhen ,
  • XU Weizhong ,
  • XU Jialiang
Expand
  • Shanghai climate Center, shanghai 200030, china

Received date: 2016-07-08

  Online published: 2017-12-28

摘要

采用SCS-CN模型,通过对城市降雨径流过程的模拟,结合上海地区径流曲线系数和排水能力分布,以淹没5 cm深度作为致涝阈值,反演上海市短历时强降水1 h致灾临界面雨量,接着选取4个110积水报警较多和造成灾害较重短历时强降水典型个例,根据4个典型强降水过程逐时雨量与报警点的空间分布及逐时最大雨量与积水报警数的关系,验证分析上海地区短历时强降水引起积水灾害时的小时雨量。综合反演计算结果和验证分析,确定上海地区短历时强降水致灾阈值:当雨量达30~40 mm·h-1,在上海市区和郊区大部分地区,就会出现淹没灾情和积水报警;当雨量大于等于50 mm·h-1,淹没区域增加到郊区一些新建城镇灾情加重,积水报警也明显增多;当雨量大于等于70 mm·h-1,上海市各个地区都有可能出现淹没现象灾情严重,全市都会出现积水报警且密集出现。短历时强降水致灾阈值的研究结果可为上海城市制定有效预防强降水积水淹涝灾害措施提供可靠的科学依据。

本文引用格式

贺芳芳 , 杨涵洧 , 穆海振 , 徐卫忠 , 徐家良 . 上海地区短历时强降水致灾阈值探索[J]. 高原气象, 2017 , 36(6) : 1567 -1575 . DOI: 10.7522/j.issn.1000-0534.2017.00005

Abstract

The hourly critical rainfall of short diachronic strong precipitation for urban waterlogging was calculated by inverse operation of SCS-CN model, which could simulate the runoff process of city rainfall combining with the runoff curve number and drainage ability in Shanghai. In the simulation, the downtown of Shanghai was divided to 284 drain units; the suburb was divided to 114 drain units. Also, the submergence depth of 5 cm was set as a critical value to judge whether the rainfall caused urban waterlogging. For a certain unit, when it appears strong rainfall in an hour, one certain point in the unit is submerged, and its depth is 5 cm, this precipitation is called the critical value causing urban waterlogging for this unit. Based on the conservation of water volume, this precipitation could be calculated by inverse operation of SCS-CN model. Besides, four typical examples of short diachronic strong precipitation was chosen, which led to serious disaster with more 110 urban waterlogging alarms. According to the relationship between hourly precipitation and 110 urban waterlogging alarms of four typical example, the result calculated by SCS-CN model could be verified. The results of inversion calculation of SCS-CN model and verification of four typical examples indicated that it may appear the waterlogging area and 110 alarms in downtown and most parts of suburb when the hourly rainfall is 30~40 mm·h-1 (appearing disasters). The waterlogging area will expand to new-built town of suburb and 110 alarms will increase obviously when the rainfall is more than or equal to 50 mm·h-1 (worse disasters). The waterlogging area will also appear in regions which are in higher ground of downtown and with stronger drainage ability in new-built town near the downtown, the 110 alarm was intensive and waterlogging area will appear in any regions of Shanghai when the rainfall is more than or equal to 70 mm·h-1 (appearing heavy disasters). Rainstorm is the main meteorological disaster of Shanghai in summer half year. Rainstorm of Shanghai had turned to strong, local, extremely short-time change trend and the short diachronic strong precipitation had been one of the most destructive meteorological disasters from May to September of Shanghai since 1995, it was an important reason of water disasters and the serious water disasters was caused by it in Shanghai. Thus, research fruit on the critical value of short diachronic strong precipitation causing urban waterlogging could provide reliable scientific basis to draw up measure for effective prevention of urban waterlogging in Shanghai but the research reports with respect to the critical value of short diachronic strong precipitation were less.

参考文献

[1]Tramblay Y, Badiw, Driouech F, et al, 2012. Climate change impacts on extreme precipitation in Morocco[J]. Global and Planetary Change, 82:104-114.
[2]Yamamoto R, Sakural Y, 1999. Long-term intensification of extremely heavy rainfall intensity in recent 100 years[J]. World Resour Rev, 11:271-281.
[3]Bai A J, Liu X D, 2010. Characteristics of rainfall variation over east china during the last 50 years and their relationships with droughts and floods[J]. Journal Trop Meteor, 26(2):194-200.<br/>白爱娟, 刘晓东, 2010.华东地区近50年降水量的变化特征及其与旱涝灾害的关系分析[J].热带气象学报, 26(2):194-200.
[4]Bao H J, Liang L, Han Y H, 2013. A research for thresholds value of area rainfall causing flood in medium and small basin[C]//Nanjing:Chinese Meteorology Society The application of professional and public forecasting technology and service, the 3<sup>rd</sup> meteorological service and development forum, 70-77.<br/>包红军, 梁莉, 韩焱红, 2013. 中小流域暴雨致洪临界面雨量阈值确定技术研究[C]//南京: 中国气象学会年会. 创新驱动发展提高气象灾害防御能力一第三届气象服务发展论坛公众、专业气象预报服务技术与应用, 70-77.
[5]Cai M, Ding Y G, Jiang Z H, 2007. Extreme precipitation experimentation over eastern China based on L-moment estimation[J]. Plateau Meteor, 26(2):309-318.<br/>蔡敏, 丁裕国, 江志红, 2007.我国东部极端降水时空分布及其概率特征[J].高原气象, 26(2):309-318.
[6]Zeng M J, Zhang B, Wu H Y, et al, 2015. Study on severe convective weather forecast method based on approach concept[J]. Plateau Meteor, 34(5):1357-1368. DOI:10.7522/j.issn.1000-0534.2014.00143.<br/>曾明剑, 张备, 吴海英, 等, 2015.基于接近度概念的强对流天气预报方法研究[J].高原气象, 34(5):1357-1368.
[7]Chen J M, Lu G H, Wu Z Y, et al, 2016. Change properties of summer extreme precipitation events and temperature and associated large-scale circulation in China during 1960-2009[J]. Plateau Meteor, 35(3):675-684. DOI:10.7522/j.issn.1000-0534.2015.00072.<br/>陈金明, 陆桂华, 吴志勇, 等, 2016. 1960-2009年中国夏季极端降水事件与气温的变化及其环流特征[J].高原气象, 35(3):675-684.
[8]Gong S L, Li C, Yang S L, 2008. Land subsidence and urban flood prevention safety in Shanghai[J]. Hydrogeology &amp; Engineering Geology, 35(4):96-101.<br/>龚士良, 李采, 杨士伦, 2008.上海地面沉降与城市防讯安全[J].水文地质工程地质, 35(4):96-101.
[9]He F F, Zhao B K, 2009. The characteristics of climate change of torrential rains in Shanghai region in recent 30 Years[J]. Adv Earth Sci, 26(3):1230-1267.<br/>贺芳芳, 赵兵科, 2009.近30年上海地区暴雨的气候变化特征[J].地球科学进展, 26(3):1230-1267.
[10]Li N, Yuan W, 2011. Characteristics cause factors and influence mechanism of flood and waterlogging in Shanghai[J]. Journal of Natural Disasters, 20(1):37-45.<br/>李娜, 袁雯. 2011.上海洪涝灾害发生特征、致灾因子及影响机制研究[J].自然灾害学报, 20(1):37-45.
[11]Li Q X, Huang J Y, 2010. Study on threshold values with an extreme events of precipitation in Beijing[J]. Adv Water Sci, 21(5):660-665.<br/>李庆祥, 黄嘉佑, 2010.北京地区强降水极端气候事件阈值[J].水科学进展, 21(5):660-665.
[12]Li Y, Zhou Q, Zhou W, et al, 2013. Studies on extreme temperature and precipitation threshold values in different climate zones of China[J]. Plateau Meteor, 32(5):1382-1388. DOI:10.7522/j.issn.1000-0534.2012.00129.<br/>李雁, 周青, 周薇, 等, 2013.中国不同气候区高、低温及强降水阈值[J].高原气象, 32(5):1382-1388.
[13]Lin J J, Zhang Q, 2015. Characteristics of China climate states change and its impact on the analysis of climate change[J]. Plateau Meteor, 34(6):1593-1600. DOI:10.7522/j.issn.1000-0534.2014.00092.<br/>林婧婧, 张强, 2015.中国气候态变化特征及其对气候变化分析的影响[J].高原气象, 34(6):1593-1600.
[14]Liu J F, Ding Y G, Jiang Z Q, 2007. The influence of aggravated global warming on the probability of extreme climatic event[J]. Plateau Meteor, 26(4):838-842.<br/>刘吉峰, 丁裕国, 江志强, 2007.全球变暖加剧对极端气候概率影响的初步探讨[J].高原气象, 26(4):838-842.
[15]Liu Z Y, Yang D W, Hu J W, 2010. The warning method and its application of mountain torrents and medium and small rivers based on dynamic rainfall[C]//Chinese Hydraulic Engineering Society, Academic proceeding, Zhengzhou:The Yellow River Water Conservancy Press, 482-488.<br/>刘志雨, 杨大文, 胡健伟, 2010. 基于动态界雨量的中小河流山洪预警方法及其应用[C]//中国水利学会. 中国水利学会2010年学术年会论文集(上册), 郑州: 黄河水利出版社, 482-488.
[16]Lu M, Liu M, Hou L J, et al, 2010. Characteristics of rainfall in shanghai and its influence on urban flood disaster[J]. Journal of Natural Disasters, 19(3):7-12.<br/>陆敏, 刘敏, 侯立军, 等, 2010.上海降雨特征及其对城市水情灾害的影响[J].自然灾害学报, 19(3):7-12.
[17]Si F Y, Zhou S W, Wang C H, et al, 2015. Analysis of a severe convection event causing heavy disaster in North Central of Henan[J]. Plateau Meteor, 34 (6):1732-1740. DOI:10.7522/j.issn.1000-0534.2015.00027.<br/>司福意, 周顺武, 王传辉, 等, 2015.豫中北一次重致灾强对流天气过程剖析[J].高原气象, 34 (6):1732-1740.
[18]Wang C C, Zhai P M, 2009. Changes of precipitation extremes in China's large cities[J]. Climatic Environ Res, 14(5):553-560.<br/>王萃萃, 翟盘茂, 2009.中国大城市极端强降水事件变化的初步分析[J].气候与环境研究, 14(5):553-560.
[19]Wang X F, Wang P, Zhang L, et al, 2015. Numerical simulation of '7·31' severe convection event in Shanghai using rapid refresh technique[J]. Plateau Meteor, 34(1):124-136. DOI:10.7522/j.issn.1000-0534.2013.00202.<br/>王晓峰, 王平, 张蕾, 等, 2015.上海"7·31"局地强对流快速更新同化数值模拟研究[J].高原气象, 34(1):124-136.
[20]Yang Z G, Jian J, Hong J C, 2014. Temporal and spatial distribution of extreme precipitation events in Tibet during 1961-2010[J]. Plateau Meteor, 33(1):37-42. DOI:10.7522/j.issn.1000-0534.2013.00147.<br/>杨志刚, 建军, 洪建昌, 2014. 1961-2010年西藏极端降水事件时空分布特征[J].高原气象, 33(1):37-42.
[21]Zhai P M, Wang C C, Li W, 2007. A review on study of change in precipitation extremes[J]. Adv Climate Change Res, 3(3):144-148.<br/>翟盘茂, 王萃萃, 李威, 2007.极端降水事件变化的观测研究[J].气候变化研究进展, 3(3):144-148.
[22]Zhang Y J, Wu H, Wu S A, et al, 2014. Determination of area precipitation threshold of rainstorm-flood harazed in the Nandu river basin[J]. J Appl Meteor Sci, 25(6):731-739.<br/>张亚杰, 吴慧, 吴胜安, 等, 2014.南渡江流域暴雨洪涝致灾临界面雨量的确定[J].应用气象学报, 25(6):731-739.
文章导航

/