论文

中国大陆东部相对湿度变化与海陆热力差异的关联性初探

  • 齐庆华 ,
  • 蔡榕硕
展开
  • 国家海洋局第三海洋研究所/国家海洋局海洋-大气化学与全球变化重点实验室, 福建 厦门 361005

收稿日期: 2016-11-23

  网络出版日期: 2017-12-28

基金资助

福建省自然科学基金面上项目(2017J01076);国家重点研发计划"全球变化及应对"重点专项(2017YFA0604901);中国清洁发展机制基金项目(2014112)

The Variation of Relative Humidity in the East of Chinese Mainland and Its Association with Sea-Land Thermal Contrast

  • QI Qinghua ,
  • CAI Rongshuo
Expand
  • Key Laboratory of Global Change and Marine-Atmospheric Chemistry, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, Fujian, China

Received date: 2016-11-23

  Online published: 2017-12-28

摘要

相对湿度是制约雾与霾形成和转换以及影响能见度的最关键环境气象参数。而海陆热力差异是影响我国东部及沿海雾霾天气的重要气候背景。立足于中国大陆东部和沿海地区所处的地理环境,综合海陆热力差异这一要素,从低层大气环流变化及水汽输送等角度,对相对湿度多时空尺度的变化及其热动力成因和机制进行了尝试性分析。结果表明,50多年来,中国东部冬季海陆热力差异主要形成于我国长江以南地区和黑潮(包括源区黑潮和东海黑潮)以东海域。由此构建的海陆温差指标显示,该纬向海陆热力差异存在显著的准7年和准4年的年际变化以及准17年的年代际变化,同时还有明显的长期增强趋势,其主要与我国长江中游地区-黄淮流域-华北地区及以东沿海一线(负相关区)和华南地区(正相关区)的相对湿度变化密切关联。其中,冬季纬向海陆热力差异的减弱(增强),主要造成低空季风环流的西南风(东北风)异常,进而调控源自孟加拉湾东部和我国南海海域(东中国海及以东海域)的水汽向我国大陆东部的输送,并可通过制约水汽输送和降水等形式影响以上地区相对湿度的变化。纬向海陆热力差异的增强很可能引起华北等地区相对湿度的减小,而导致华南地区相对湿度的显著增加,反之亦然。此成果可为明确重点区域相对湿度变化与雾霾发生发展的关系和未来演变等研究工作的深入开展,以及为有关雾霾天气的预测预警报服务提供必要的科学依据和保障。

本文引用格式

齐庆华 , 蔡榕硕 . 中国大陆东部相对湿度变化与海陆热力差异的关联性初探[J]. 高原气象, 2017 , 36(6) : 1587 -1594 . DOI: 10.7522/j.issn.1000-0534.2017.00018

Abstract

Relative humidity is one of the most key environmental meteorological parameters for the formation and transformation of the fog and haze, and it can impact the atmosphere visibility. Sea-land thermal contrast is the important climatic background for the fog and haze weather in the eastern and coastal China. Considering the geographical environment and the sea-land temperature difference in the east of Chinese mainland, the multi-scale spatio-temporal variations of the relative humidity (RH) and the associated thermodynamic causes and mechanisms were tentatively analyzed from the perspective of changes in atmospheric circulation, water vapor transport and the precipitation. The results show that the sea-land thermal contrast mainly formed in the south area of Yangtze river and the east sea area of Kuroshio (mainly include the Kuroshio at source area and in East China Sea) in recent 50 years. Thus the sea-land temperature deference (SLTD) indicator was built by the subtraction of averaged temperature between the two areas. And this zonal sea-land thermal contrast was subject to an obvious long-term increasing trend superposed by distinct interannual (quasi-4a and quasi-7a) and interdecadal (about 17a) changes. The correlation analysis indicated that the SLTD had a close relationship with the RH anomalies in the band areas that including the middle reaches of Yangtze river, the Huanghuai area, the North China and the coastal zones east of it (negative correlation area) and the South China (positive correlation area). Regression analysis found that the weakened (enhancement) of the zonal sea-land thermal contrast in winter mainly results in the southwest (northeast) anomalies of the monsoon circulation, which tends to regulate the water vapor transport from the eastern bay of Bengal and the South China Sea (the east China seas) to the east of Chinese mainland, and then it can impact the changes of RH at above areas through the restricttion in the form of water vapor transportation and precipitation. In addition, the strengthening of the SLTD was likely to cause the RH decrease in the North China, while significantly increase in the South China, and vice versa. The analysis above is attempted to provide an important scientific basis for figuring out the RH variation and its relationship with the occurrence of the fog and haze in the hotspot areas as well as the evolution in the future, which is very significant to the scientific adaptation to the climate and environment changes in development areas in the eastern China.

参考文献

[1]Doyle M, Dorling S, 2001. Visibility trends in the UK 1950-1997[J]. Atmos Environ, 36:3161-3172.
[2]Guo J P, Zhang X Y, Wu Y R, et al, 2011. Spatio-temporal variation trends of satellite-based aerosol optical depth in China during 1980-2008[J]. Atmos Environ, 45(37):6802-6811.
[3]Schichtel B A, Husar R B, Falke S R, et al, 2001. Haze trends over the United States 1980-1995[J]. Atmos Environ, 35:5205-5210.
[4]Song Y F, Liu Y J, Ding Y H, 2012. A study of surface humidity change in China during the recent 50 years[J]. Acta Meteor Sin, 26:541-553.
[5]Cai R S, Chen J L, Tan H J, 2011. Variations of the sea surface temperature in the offshore area of China and their relationship with the East Asian monsoon under the global warming[J]. Climatic Environ Res, 16(1):94-104.<br/>蔡榕硕, 陈际龙, 谭红建, 2011.全球变暖背景下中国近海表层海温变异及其与东亚季风的关系[J].气候与环境研究, 16(1):94-104.
[6]Ding Y H, Liu Y J, 2014. Analysis of long-term variations of fog and haze in China in recent 50 years and their relations with atmospheric humidity[J]. Science China:Earth Sciences, 44(1):37-48.<br/>丁一汇, 柳艳菊, 2014.近50年我国雾和霾长期变化特征及其与大气湿度的关系[J].中国科学:地球科学, 44(1):37-48.
[7]Han D W, Liu W Q, Zhang Y J, et al, 2007. Influence of temperature and relative humidity upon aerosol mass concentrations vertical distributions[J]. Journal of the Graduate School of the Chinese Academy of Sciences, 24(5):619-624.<br/>韩道文, 刘文清, 张玉钧, 等, 2007.温度和相对湿度对气溶胶质量浓度垂直分布的影响[J].中国科学院研究生院学报, 24(5):619-624.
[8]Hao L S, Ding Y H, Min J Z, 2012. Main modes in East Asian monsoon circulaiton evolution an dits relationship with precipitation anomaly in Eastern China[J]. Plateau Meteor, 31(4):1007-1018.<br/>郝立生, 丁一汇, 闵锦忠, 2012.东亚季风环流演变的主要模态及其与中国东部降水异常的联系[J].高原气象, 31(4):1007-1018.
[9]Li D L, Shao P C, Wang H, et al, 2013. Advances in research of the north boundary belt of East Asia subtropical summer monsoon in China[J].Plateau Meteor, 32(1):305-314. DOI:10.7522/j.issn.1000-0534.2012.00030.<br/>李栋梁, 邵鹏程, 王慧, 等, 2013.中国东亚副热带夏季风北边缘带研究进展[J].高原气象, 32(1):305-314.
[10]Lin J, Liu W, Li Y, et al, 2009. Relationship between meteorological conditions and particle size distribution of atmospheric aerosols[J]. J Meteor Environ, 25(1):1-5.<br/>林俊, 刘卫, 李燕, 等, 2009.大气气溶胶粒径分布特征与气象条件的相关性分析[J].气象与环境学报, 25(1):1-5.
[11]Pu Y F, Yang J L, 2000. Relationship of acidification of air aerosols with relative huminity and its contributions to the formation of acid rain[J]. Climatic Environ Res, 5(3):296-303.<br/>蒲一芬, 杨建亮, 2000.大气气溶胶的酸化与相对湿度的关系及其对酸雨形成的贡献[J].气候与环境研究, 5(3):296-303.
[12]Qi Q H, Cai R S, Zhang Q L, 2013. Primarily analyses on variations of summer extreme precipitation in South China and its relation to the sea-air anomaly[J]. Plateau Meteor, 32(1):110-121. DOI:10.7522/j.issn.1000-0534.2012.00012.<br/>齐庆华, 蔡榕硕, 张启龙, 2013.华南夏季极端降水时空变异及其与西北部太平洋海气异常关联性初探[J].高原气象, 32(1):110-121.
[13]Qi Q H, Cai R S, Zhang Q L, 2012. Heat transport variability of the Kuroshio east of Taiwan and its possible climatic effect[J]. Acta Oceanologica Sinica, 34(5):31-38.<br/>齐庆华, 蔡榕硕, 张启龙, 2012.台湾以东黑潮经向热输送变异及可能的气候效应[J].海洋学报, 34(5):31-38.
[14]Qi Q H, Cai R S, 2014. The relation between the spatial temporal evolution of SST in the South China Sea and the earlier of later onset of the South China Sea summer monsoon[J]. Acta Oceanologica Sinica, 36(3), 94-103.<br/>齐庆华, 蔡榕硕, 2014.南海海表温时空演变与南海夏季风爆发早晚相关性初探[J].海洋学报, 36(3):94-103.
[15]Sun J Q, 1985. Visibility and relative humidity[J]. Acta Meteor Sinica, 43(2):230-234.<br/>孙景群, 1985.能见度与相对湿度的关系[J].气象学报, 43(2):230-234.
[16]Sun Y, Ma Z F, Niu T, et al, 2013. Characteristics of climate change with respect to fog days and haze days in China in the past 40 years[J]. Climatic Environ Res, 18(3):397-406.<br/>孙彧, 马振峰, 牛涛, 等, 2013.最近40年中国雾日数和霾日数的气候特征[J].气候与环境研究, 18:307-406.
[17]Wang D, You Q L, Jiang Z H, et al, 2016. Analysis of extreme temperature changes in China based on the homogeneity-adjusted data[J]. Plateau Meteor, 35(5):1352-1363. DOI:10.7522/j.issn.1000-0534.2016.00019.<br/>王岱, 游庆龙, 江志红, 等, 2016.基于均一化资料的中国极端地面气温变化分析[J].高原气象, 35(5):1352-1363.
[18]Wang H G, Cai R S, Qi Q H, et al, 2014. Land-sea thermal difference variations and its association with summer precipitation in eastern China[J]. J Appl Ocean, 33(3):385-394.<br/>王红光, 蔡榕硕, 齐庆华, 等, 2014.夏季中国东部地区海陆温差变异及其与降水的关系[J].应用海洋学学报, 33(3):385-394.
[19]Yang J, Li Z H, Huang S H, 1999. Influence of relative humidity on shortwave radiative properties of atmospheric aerosol particles[J]. Chinese J Atmos Sci, 23(2):239-247.<br/>杨军, 李子华, 黄世鸿, 1999.相对湿度对大气气溶胶粒子短波辐射特性的影响[J].大气科学, 23(2):239-247.
[20]Yao Q, Cai Z Y, Han S Q, et al, 2014. Effects of relative humidity on the aerosol size distribution and visibility in the winter in Tianjin[J]. China Environ Science, 34(3):596-603.<br/>姚青, 蔡子颖, 韩素芹, 等, 2014.天津冬季相对湿度对气溶胶浓度谱分布和大气能见度的影响[J].中国环境科学, 34(3):596-603.
[21]Zhang H M, Dong W J, Wei Z G, 2002. Correlation analysis of east Asia summer monsoon circulation anomaly index and land-sea temperature difference[J]. Plateau Meteor, 21(6):610-614.<br/>张红梅, 董文杰, 韦志刚, 2002.陆海温差与东亚夏季风环流异常指数的相关分析[J].高原气象, 2002, 21(6):610-614.
[22]Zhang L, Wu J, Zhang W, 2011. Analysis of visibility variations in China from 1955 to 2000[J]. Journal of Lanzhou University(Natural Sciences), 47:46-55.<br/>张利, 吴涧, 张武, 2011. 1955-2000年中国能见度变化趋势分析[J].兰州大学学报(自然科学版), 47:46-55.
[23]Zhang Y L, Fan G Z, Zhou D W, 2014. Variation of springtime southern branch trough and its relationship with precipitation and atmospheric circulation[J]. Plateau Meteor, 33(1):97-105. DOI:10.7522/j.issn.1000-0534.2012.00179.<br/>张永莉, 范广洲, 周定文, 等, 2014.春季南支槽变化特征及其与降水和大气环流的关系[J].高原气象, 33(1):97-105.
文章导航

/