论文

基于CloudSat资料的中国地区深对流云物理特征研究

  • 杨冰韵 ,
  • 吴晓京 ,
  • 郭徵
展开
  • 国家卫星气象中心, 北京 100081

收稿日期: 2016-10-26

  网络出版日期: 2017-12-28

基金资助

国家自然科学基金项目(41675110);公益性行业(气象)科研专项(GYHY201406035-3);国家卫星气象中心青年基金项目(201602QT001)

The Characteristics of Cloud Properties in Deep Convective Clouds across China with the CloudSat Dataset

  • YANG Bingyun ,
  • WU Xiaojing ,
  • GUO Zheng
Expand
  • National Satellite Meteorological Center, Beijing 100081, China

Received date: 2016-10-26

  Online published: 2017-12-28

摘要

利用2007-2010年和2013-2014年CloudSat卫星资料,分析了中国11个地理区域的深对流云发生率、冰/液态水路径、冰/液态水含量等分布特征及其季节变化。结果显示,深对流云发生率整体呈现从东南到西北递减的趋势,高值区主要集中在西北地区东南部、西藏东南部、西南地区东部和南部、黄淮西部和南部、江汉、江淮、江南和华南等地,就各个地区不同季节而言,江南地区夏季的值最大,达到10.34%。在垂直高度上,深对流云发生率分布在18 km以下,最大值为11.31%,出现在江南夏季4.08~4.56 km高度上。深对流云中冰水路径最大值出现在华南夏季,液态水路径最大值出现在黄淮秋季,西藏地区的深对流云中冰水路径的比例明显高于液态水路径。冰水含量在垂直高度上存在两个高值区,分别位于6~8 km、14~18 km,最大值发生在江南夏季19.44 km左右高度上,达到1 018.87 mg·m-3,季节差异较大的高度位于14~18 km。液态水含量最大值发生在江淮冬季,达到411.50 mg·m-3,高度在9.36 km左右,垂直高度上最大值在2~6 km上均有出现。该结果可以更好地揭示深对流云的气候特征,并为人工影响天气以及数值模式中对深对流云物理量的模拟提供一定的参考依据。

本文引用格式

杨冰韵 , 吴晓京 , 郭徵 . 基于CloudSat资料的中国地区深对流云物理特征研究[J]. 高原气象, 2017 , 36(6) : 1655 -1664 . DOI: 10.7522/j.issn.1000-0534.2017.00006

Abstract

The deep convective clouds are important regulators of the earth-atmosphere system and also closely relate to the formation of many extreme weathers such as downbursts, storms and lightning. The measurement of cloud profile radar (CPR) from CloudSat has the advantage in detecting the accurate properties in deep convective clouds in different altitudes. The spatial and temporal variations of the probability and cloud microphysical properties in deep convective clouds, for exemple, the ice water content (IWC), liquid water content (LWC), ice water path (IWP) and liquid water path (LWP), were analyzed across eleven sub-regions in China based on the CloudSat dataset during 2007-2010 and 2013-2014. The results indicate that the probability of deep convective clouds decreased from southeast to northwest parts generally. The high values were mainly concentrated over the southeast of Northwest China, the southeast of Tibet, the east and south of Southwest China, the west and south of Huanghuai, Jianghan, Jianghuai, Jiangnan, and South China. Generally, it can be demonstrated that the deep convective clouds are more likely to occur in summer. For each area in different seasons, the highest value of the probability of deep convective clouds in total altitudes was 10.34% over Jiangnan in summer. The value of probability was much larger over Jiangnan, Jianghan, Jianghuai or Huanan than other areas, while it was lower over Northwest China. Moreover, among the different altitudes, the probabilities were located below 18 km and the maximum reached 11.31% at roughly 4.08~4.56 km over Jiangnan. The maximum value of IWP and LWP occurred over South China in summer and Huanghuai in autumn, respectively. Over Tibet, the value of IWP was much larger than that of LWP in the deep convective clouds, because the average altitude of Tibet was relatively high and the ice clouds were formed much easily than liquid clouds. Vertically, the maximum IWC with a magnitude of 1 018.87 mg·m-3 occurred near the altitude of 19.44 km over Jiangnan in summer. Two peaks of IWC were detected at 6~8 km, and 14~18 km where the significant seasonal difference occurred. In addition, the maximum LWC was 411.50 mg·m-3 at the altitude of 9.36 km over Jianghuai in winter and the peak of LWC in the vertical height occurred from 2 km to 6 km. The results in this work can explain climatic features of deep convective clouds and provide an observational basis for weather modification and simulations of deep convective clouds in models.

参考文献

[1]Austin R T, 2007. Level 2B radar-only cloud water content (2B-CWC-RO) process description document[R]. CloudSat project report, 5:1-26.
[2]Fu R, Del Genio A D, Rossow W B, 1990. Behavior of deep convective clouds in the tropical Pacific deduced from ISCCP radiances[J]. J Climate, 3(10):1129-1152.
[3]Heintzenberg J, Charlson R J, Brenguier J L, et al, 2009. Clouds in the perturbed climate system-their relationship to energy balance, atmospheric dynamics, and precipitation[C]//Ernst Stru ngmann Forum (2008:Frankfurt, Germany). Cambridge:MIT press.
[4]Hu Y, Rodier S, Xu K, et al, 2010. Occurrence, liquid water content, and fraction of supercooled water clouds from combined CALIOP/ⅡR/MODIS measurements[J]. J Geophys Res, 115(D4):D00H34. DOI:10. 1029/2009JD012384.
[5]Luo Y, Zhang R, Qian W, et al, 2011. Intercomparison of deep convection over the Tibetan Plateau-Asian monsoon region and subtropical North America in boreal summer using CloudSat/CALIPSO data[J]. J Climate, 24(8):2164-2177.
[6]Luo Z, Liu G Y, Stephens G L, 2008. CloudSat adding new insight into tropical penetrating convection[J]. Geophys Res Lett, 35(19):L19819. DOI:10. 1029/2008GL035330.
[7]Sassen K, Wang Z, Liu D, 2008. Global distribution of cirrus clouds from CloudSat/Cloud-Aerosol lidar and infrared pathfinder satellite observations (CALIPSO) measurements[J]. J Geophys Res, 113(D8):D00A12. DOI:10. 1029/2008JD009972.
[8]Sassen K, Wang Z, Liu D, 2009. Cirrus clouds and deep convection in the tropics:Insights from CALIPSO and CloudSat[J]. J Geophys Res, 114(D4):D00H06. DOI:10. 1029/2009JD011916.
[9]Takahashi H, Luo Z J, 2014. Characterizing tropical overshooting deep convection from joint analysis of CloudSat and geostationary satellite observations[J]. J Geophys Res, 119(1):112-121.
[10]Tian J, Dong X, Xi B, et al, 2016. Retrievals of ice cloud microphysical properties of deep convective systems using radar measurements[J]. J Geophys Res, 121(18):10820-10839. DOI:10. 1002/2015JD024686.
[11]Wang Z, Sassen K, 2001. Cloud type and macrophysical property retrieval using multiple remote sensors[J]. J Appl Meteor, 40(10):1665-1682.
[12]Wang Z, Sassen K, 2007. Level 2 cloud scenario classification product process description and interface control document[J]. Colorado State University:Cooperative Institute for Research in the Atmosphere, 5:50.
[13]Young A H, Bates J J, Curry J A, 2012. Complementary use of passive and active remote sensing for detection of penetrating convection from CloudSat, CALIPSO, and Aqua MODIS[J]. J Geophys Res, 117(D13):D13205. DOI:10. 1029/2011JD016749.
[14]Yuan J, Houze Jr R A, Heymsfield A J, 2011. Vertical structures of anvil clouds of tropical mesoscale convective systems observed by CloudSat[J]. J Atmos Sci, 68(8):1653-1674.
[15]Bai J Y, Xu X D, Yu S Q, 2003. Summer time deep convection heating over southeast of Tibetan plateau[J]. Meteor Sci Technol, 31(1):18-22.<br/>柏晶瑜, 徐祥德, 于淑秋, 2003.青藏高原东南部夏季深对流加热研究[J].气象科技, 31(1):18-22.
[16]Chen G C, Zheng Y G, Xiao T G, 2011. Distribution and spatiotemporal variations of deep convective clouds over China during the warm season[J]. Meteor Mon, 37(1):75-84.<br/>陈国春, 郑永光, 肖天贵, 2011.我国暖季深对流云分布与日变化特征分析[J].气象, 37(1):75-84.
[17]Chen L, Zhou Y J, 2015. Different physical properties of summer precipitation clouds over Qinghai-Xizang plateau and Sichuan basin[J]. Plateau Meteor, 34(3):621-632. DOI:10. 7522/j.issn. 1000-0534. 2014. 00036.<br/>陈玲, 周筠臖, 2015.青藏高原和四川盆地夏季降水云物理特性差异[J].高原气象, 34(3):621-632.
[18]Chen L X, Song Y K, Liu J P, et al, 1999. On the diurnal variation of convection over Qinghai-Xizang plateau during summer as revealed from meteorological satellite data[J]. Acta Meteor Sinica, 57(5):549-560.<br/>陈隆勋, 宋玉宽, 刘骥平, 等, 1999.从气象卫星资料揭示的青藏高原夏季对流云系的日变化[J].气象学报, 57(5):549-560.
[19]Fang X, Qiu H, Cao Z Q, et al, 2008. Research on severe convective cloud identification by using AMSU-B microwave data[J]. Meteor Mon, 34(3):22-29.<br/>方翔, 邱红, 曹志强, 等, 2008.应用AMSU-B微波资料识别强对流云区的研究[J].气象, 34(3):22-29.
[20]Hu W, Huang Y, Wang L B, 2010. Characteristic and effect of convective cloud merger in Yangtze and Huaihe river basins in summer[J]. Plateau Meteor, 29(1):206-213.<br/>胡雯, 黄勇, 汪腊宝, 2010.夏季江淮区域对流云合并的基本特征及影响[J].高原气象, 29(1):206-213.
[21]Jiang J X, Fan M Z, 2002. Convective clouds and mesoscale convective systems over the Tibetan plateau in summer[J]. Chinese J Atmos Sci, 26(2):263-270.<br/>江吉喜, 范梅珠, 2002.夏季青藏高原上的对流云和中尺度对流系统[J].大气科学, 26(2):263-270.
[22]Li H R, Sun X J, Wang M Y, et al. 2015. Research on different types of cloud and variation characteristics of hydrometeors in cloud over China and its neighborhood in daytime[J]. Plateau Meteor, 34(6):1625-1635. DOI:10. 7522/j.issn. 1000-0534. 2014. 00129.<br/>李浩然, 孙学金, 王旻燕, 等, 2015.中国及周边地区白天各类云及其水凝物变化特征研究[J].高原气象, 34(6):1625-1635.
[23]Li Y Q, Zhang Q, 2014. Contemporaneous relationships between summer cloudiness and precipitation over Southwest China[J]. J Nat Resour, 29(3):441-453.<br/>李跃清, 张琪, 2014.西南地区夏季云量与降水的关系特征分析[J].自然资源学报, 29(3):441-453.
[24]Ma Z S, Liu Q J, Qin Y Y, 2016. Validation and evaluation of cloud and precipitation forecast performance by different moist physical processes schemes in GRPAES_GFS Model[J]. Plateau Meteor, 35(4):989-1003. DOI:10. 7522/j.issn. 1000-0534. 2015. 00069.<br/>马占山, 刘奇俊, 秦琰琰, 2016. GRAPES_GFS不同湿物理过程对云降水预报性能的诊断与评估[J].高原气象, 35(4):989-1003.
[25]Qi X X, Zheng Y G, 2009. Distribution and spatiotemporal variations of deep convection over China and its vicinity during the summer of 2007[J]. J Appl Meteor Sci, 20(3):286-294.<br/>祁秀香, 郑永光, 2009. 2007年夏季我国深对流活动时空分布特征[J].应用气象学报, 20(3):286-294.
[26]Qiu H, Fang X, Gu S Y, et al, 2007. The structure of tropical cyclone from advanced microwave sounding unit[J]. J Appl Meteor Sci, 18(6):810-820<br/>邱红, 方翔, 谷松岩, 等, 2007.利用AMSU分析热带气旋结构特征[J].应用气象学报, 18(6):810-820.
[27]Su A F, Yin Y, Lü X N, et al, 2013. Spatial-temporal characteristics and synoptic significance of deep convective clouds over the physiognomy transition region of western Huanghuai[J]. Acta Meteor Sinica, 71(3):383-396.<br/>苏爱芳, 银燕, 吕晓娜, 等, 2013.黄淮西部地貌过渡区深对流云的时空特征及其天气意义[J].气象学报, 71(3):383-396.
[28]Wang S J, He W Y, Chen H B, et al, 2010. Statistics of cloud height over the Tibetan Plateau and its surrounding region derived from the CloudSat Data[J]. Plateau Meteor, 29(1):1-9.<br/>王胜杰, 何文英, 陈洪滨, 等, 2010.利用CloudSat资料分析青藏高原、高原南坡及南亚季风区云高度的统计特征量[J].高原气象, 29(1):1-9.
[29]Wang S H, Han Z G, Yao Z G, 2010. Comparison of cloud amounts from ISCCP and CloudSat over China and its neighborhood[J]. Chinese J Atmos Sci, 34(4):767-779.<br/>王帅辉, 韩志刚, 姚志刚, 2010.基于CloudSat和ISCCP资料的中国及周边地区云量分布的对比分析[J].大气科学, 34(4):767-779.
[30]Wang S H, Han Z G, Yao Z G, 2011. Analysis on cloud vertical structure over China and its neighborhood based on CloudSat data[J]. Plateau Meteor, 30(1):38-52.<br/>王帅辉, 韩志刚, 姚志刚, 等, 2011.基于CloudSat资料的中国及周边地区云垂直结构统计分析[J].高原气象, 30(1):38-52.
[31]Yang B Y, Zhang H, Peng J, et al, 2014. Analysis on global distribution characteristics of cloud microphysical and optical properties based on the CloudSat data[J]. Plateau Meteor, 33(4):1105-1118. DOI:10. 7522/j.issn. 1000-0534. 2013. 00026.<br/>杨冰韵, 张华, 彭杰, 等, 2014.利用CloudSat卫星资料分析云微物理和光学性质的分布特征[J].高原气象, 33(4):1105-1118.
[32]Ye P L, Wang T H, Shang K Z, et al, 2014. Analysis of cloud vertical structure over western China based on active satellite data[J]. Plateau Meteor, 33(4):977-987. DOI:10. 7522/j.issn. 1000-0534. 2013. 00158.<br/>叶培龙, 王天河, 尚可政, 等, 2014.基于卫星资料的中国西部地区云垂直结构分析[J].高原气象, 33(4):977-987.
[33]Yin Y, Qu P, Jin L J, 2010. Vertical transport of CO, NO, NO<sub>x</sub>, and O<sub>3</sub> by tropical deep convective clouds[J]. Chinese J Atmos Sci, 34(5):925-936.<br/>银燕, 曲平, 金莲姬, 等, 2010.热带深对流云对CO, NO, NOx和O<sub>3</sub>的垂直输送作用[J].大气科学, 34(5):925-936.
[34]Yin J F, Wang D H, Zhai G Q, et al, 2013. A study of cloud vertical profiles from the Cloudsat data over the East Asian continent[J]. Acta Meteor Sinica, 71(1):121-133<br/>尹金方, 王东海, 翟国庆, 等, 2013.基于星载云雷达资料的东亚大陆云垂直结构特征分析[J].气象学报, 71(1):121-133.
[35]Zhang H, Yang B Y, Peng J, et al, 2015. The characteristics of cloud microphysical properties in East Asia with the CloudSat dataset[J]. Chinese J Atmos Sci, 39(2):235-248.<br/>张华, 杨冰韵, 彭杰, 等, 2015.东亚地区云微物理量分布特征的CloudSat卫星观测研究[J].大气科学, 39(2):235-248.
[36]Zhao S H, 2008. A study on the mesoscale and microscale structure in different types of clouds by TRMM satellite and Cloudsat satellite[D]. Nanjing:Nanjing University of Information Science and Technology.<br/>赵姝慧, 2008. 利用TRMM卫星和Cloudsat卫星对不同类型云系的中微尺度结构的研究分析[D]. 南京: 南京信息工程大学.
[37]Zheng Y G, Chen J, Zhu P J, 2008. Distributions and daily variations of Mesoscale Convective Systems over China and its neighborhood in summer[J]. Chinese Sci Bull, 53(4):471-481.<br/>郑永光, 陈炯, 朱佩君, 2008.中国及周边地区夏季中尺度对流系统分布及其日变化特征[J].科学通报, 53(4):471-481.
[38]National Meteorological Center, 2006. China meteorological geographic division[M]. Beijing:China Meteorological Press.<br/>中国气象局国家气象中心, 2006.中国气象地理区划手册[M].北京:气象出版社.
[39]Zhong S X, Wang D H, Zhang R H, et al, 2011. Vertical structure of convective cloud in a cold vortex over Northeastern China using CloudSat data[J]. J Appl Meteor Sci, 22(3):257-264.<br/>钟水新, 王东海, 张人禾, 等, 2011.基于CloudSat资料的冷涡对流云带垂直结构特征[J].应用气象学报, 22(3):257-264.
[40]Zhu Q G, Lin J R, Shou S W, 1981. Principles and methods of synoptic meteorology[M]. Beijing:China Meteorological Press.<br/>朱乾根, 林锦瑞, 寿绍文, 1981.天气学原理和方法[M].北京:气象出版社.
文章导航

/