[1]Austin R T, 2007. Level 2B radar-only cloud water content (2B-CWC-RO) process description document[R]. CloudSat project report, 5:1-26.
[2]Fu R, Del Genio A D, Rossow W B, 1990. Behavior of deep convective clouds in the tropical Pacific deduced from ISCCP radiances[J]. J Climate, 3(10):1129-1152.
[3]Heintzenberg J, Charlson R J, Brenguier J L, et al, 2009. Clouds in the perturbed climate system-their relationship to energy balance, atmospheric dynamics, and precipitation[C]//Ernst Stru ngmann Forum (2008:Frankfurt, Germany). Cambridge:MIT press.
[4]Hu Y, Rodier S, Xu K, et al, 2010. Occurrence, liquid water content, and fraction of supercooled water clouds from combined CALIOP/ⅡR/MODIS measurements[J]. J Geophys Res, 115(D4):D00H34. DOI:10. 1029/2009JD012384.
[5]Luo Y, Zhang R, Qian W, et al, 2011. Intercomparison of deep convection over the Tibetan Plateau-Asian monsoon region and subtropical North America in boreal summer using CloudSat/CALIPSO data[J]. J Climate, 24(8):2164-2177.
[6]Luo Z, Liu G Y, Stephens G L, 2008. CloudSat adding new insight into tropical penetrating convection[J]. Geophys Res Lett, 35(19):L19819. DOI:10. 1029/2008GL035330.
[7]Sassen K, Wang Z, Liu D, 2008. Global distribution of cirrus clouds from CloudSat/Cloud-Aerosol lidar and infrared pathfinder satellite observations (CALIPSO) measurements[J]. J Geophys Res, 113(D8):D00A12. DOI:10. 1029/2008JD009972.
[8]Sassen K, Wang Z, Liu D, 2009. Cirrus clouds and deep convection in the tropics:Insights from CALIPSO and CloudSat[J]. J Geophys Res, 114(D4):D00H06. DOI:10. 1029/2009JD011916.
[9]Takahashi H, Luo Z J, 2014. Characterizing tropical overshooting deep convection from joint analysis of CloudSat and geostationary satellite observations[J]. J Geophys Res, 119(1):112-121.
[10]Tian J, Dong X, Xi B, et al, 2016. Retrievals of ice cloud microphysical properties of deep convective systems using radar measurements[J]. J Geophys Res, 121(18):10820-10839. DOI:10. 1002/2015JD024686.
[11]Wang Z, Sassen K, 2001. Cloud type and macrophysical property retrieval using multiple remote sensors[J]. J Appl Meteor, 40(10):1665-1682.
[12]Wang Z, Sassen K, 2007. Level 2 cloud scenario classification product process description and interface control document[J]. Colorado State University:Cooperative Institute for Research in the Atmosphere, 5:50.
[13]Young A H, Bates J J, Curry J A, 2012. Complementary use of passive and active remote sensing for detection of penetrating convection from CloudSat, CALIPSO, and Aqua MODIS[J]. J Geophys Res, 117(D13):D13205. DOI:10. 1029/2011JD016749.
[14]Yuan J, Houze Jr R A, Heymsfield A J, 2011. Vertical structures of anvil clouds of tropical mesoscale convective systems observed by CloudSat[J]. J Atmos Sci, 68(8):1653-1674.
[15]Bai J Y, Xu X D, Yu S Q, 2003. Summer time deep convection heating over southeast of Tibetan plateau[J]. Meteor Sci Technol, 31(1):18-22.<br/>柏晶瑜, 徐祥德, 于淑秋, 2003.青藏高原东南部夏季深对流加热研究[J].气象科技, 31(1):18-22.
[16]Chen G C, Zheng Y G, Xiao T G, 2011. Distribution and spatiotemporal variations of deep convective clouds over China during the warm season[J]. Meteor Mon, 37(1):75-84.<br/>陈国春, 郑永光, 肖天贵, 2011.我国暖季深对流云分布与日变化特征分析[J].气象, 37(1):75-84.
[17]Chen L, Zhou Y J, 2015. Different physical properties of summer precipitation clouds over Qinghai-Xizang plateau and Sichuan basin[J]. Plateau Meteor, 34(3):621-632. DOI:10. 7522/j.issn. 1000-0534. 2014. 00036.<br/>陈玲, 周筠臖, 2015.青藏高原和四川盆地夏季降水云物理特性差异[J].高原气象, 34(3):621-632.
[18]Chen L X, Song Y K, Liu J P, et al, 1999. On the diurnal variation of convection over Qinghai-Xizang plateau during summer as revealed from meteorological satellite data[J]. Acta Meteor Sinica, 57(5):549-560.<br/>陈隆勋, 宋玉宽, 刘骥平, 等, 1999.从气象卫星资料揭示的青藏高原夏季对流云系的日变化[J].气象学报, 57(5):549-560.
[19]Fang X, Qiu H, Cao Z Q, et al, 2008. Research on severe convective cloud identification by using AMSU-B microwave data[J]. Meteor Mon, 34(3):22-29.<br/>方翔, 邱红, 曹志强, 等, 2008.应用AMSU-B微波资料识别强对流云区的研究[J].气象, 34(3):22-29.
[20]Hu W, Huang Y, Wang L B, 2010. Characteristic and effect of convective cloud merger in Yangtze and Huaihe river basins in summer[J]. Plateau Meteor, 29(1):206-213.<br/>胡雯, 黄勇, 汪腊宝, 2010.夏季江淮区域对流云合并的基本特征及影响[J].高原气象, 29(1):206-213.
[21]Jiang J X, Fan M Z, 2002. Convective clouds and mesoscale convective systems over the Tibetan plateau in summer[J]. Chinese J Atmos Sci, 26(2):263-270.<br/>江吉喜, 范梅珠, 2002.夏季青藏高原上的对流云和中尺度对流系统[J].大气科学, 26(2):263-270.
[22]Li H R, Sun X J, Wang M Y, et al. 2015. Research on different types of cloud and variation characteristics of hydrometeors in cloud over China and its neighborhood in daytime[J]. Plateau Meteor, 34(6):1625-1635. DOI:10. 7522/j.issn. 1000-0534. 2014. 00129.<br/>李浩然, 孙学金, 王旻燕, 等, 2015.中国及周边地区白天各类云及其水凝物变化特征研究[J].高原气象, 34(6):1625-1635.
[23]Li Y Q, Zhang Q, 2014. Contemporaneous relationships between summer cloudiness and precipitation over Southwest China[J]. J Nat Resour, 29(3):441-453.<br/>李跃清, 张琪, 2014.西南地区夏季云量与降水的关系特征分析[J].自然资源学报, 29(3):441-453.
[24]Ma Z S, Liu Q J, Qin Y Y, 2016. Validation and evaluation of cloud and precipitation forecast performance by different moist physical processes schemes in GRPAES_GFS Model[J]. Plateau Meteor, 35(4):989-1003. DOI:10. 7522/j.issn. 1000-0534. 2015. 00069.<br/>马占山, 刘奇俊, 秦琰琰, 2016. GRAPES_GFS不同湿物理过程对云降水预报性能的诊断与评估[J].高原气象, 35(4):989-1003.
[25]Qi X X, Zheng Y G, 2009. Distribution and spatiotemporal variations of deep convection over China and its vicinity during the summer of 2007[J]. J Appl Meteor Sci, 20(3):286-294.<br/>祁秀香, 郑永光, 2009. 2007年夏季我国深对流活动时空分布特征[J].应用气象学报, 20(3):286-294.
[26]Qiu H, Fang X, Gu S Y, et al, 2007. The structure of tropical cyclone from advanced microwave sounding unit[J]. J Appl Meteor Sci, 18(6):810-820<br/>邱红, 方翔, 谷松岩, 等, 2007.利用AMSU分析热带气旋结构特征[J].应用气象学报, 18(6):810-820.
[27]Su A F, Yin Y, Lü X N, et al, 2013. Spatial-temporal characteristics and synoptic significance of deep convective clouds over the physiognomy transition region of western Huanghuai[J]. Acta Meteor Sinica, 71(3):383-396.<br/>苏爱芳, 银燕, 吕晓娜, 等, 2013.黄淮西部地貌过渡区深对流云的时空特征及其天气意义[J].气象学报, 71(3):383-396.
[28]Wang S J, He W Y, Chen H B, et al, 2010. Statistics of cloud height over the Tibetan Plateau and its surrounding region derived from the CloudSat Data[J]. Plateau Meteor, 29(1):1-9.<br/>王胜杰, 何文英, 陈洪滨, 等, 2010.利用CloudSat资料分析青藏高原、高原南坡及南亚季风区云高度的统计特征量[J].高原气象, 29(1):1-9.
[29]Wang S H, Han Z G, Yao Z G, 2010. Comparison of cloud amounts from ISCCP and CloudSat over China and its neighborhood[J]. Chinese J Atmos Sci, 34(4):767-779.<br/>王帅辉, 韩志刚, 姚志刚, 2010.基于CloudSat和ISCCP资料的中国及周边地区云量分布的对比分析[J].大气科学, 34(4):767-779.
[30]Wang S H, Han Z G, Yao Z G, 2011. Analysis on cloud vertical structure over China and its neighborhood based on CloudSat data[J]. Plateau Meteor, 30(1):38-52.<br/>王帅辉, 韩志刚, 姚志刚, 等, 2011.基于CloudSat资料的中国及周边地区云垂直结构统计分析[J].高原气象, 30(1):38-52.
[31]Yang B Y, Zhang H, Peng J, et al, 2014. Analysis on global distribution characteristics of cloud microphysical and optical properties based on the CloudSat data[J]. Plateau Meteor, 33(4):1105-1118. DOI:10. 7522/j.issn. 1000-0534. 2013. 00026.<br/>杨冰韵, 张华, 彭杰, 等, 2014.利用CloudSat卫星资料分析云微物理和光学性质的分布特征[J].高原气象, 33(4):1105-1118.
[32]Ye P L, Wang T H, Shang K Z, et al, 2014. Analysis of cloud vertical structure over western China based on active satellite data[J]. Plateau Meteor, 33(4):977-987. DOI:10. 7522/j.issn. 1000-0534. 2013. 00158.<br/>叶培龙, 王天河, 尚可政, 等, 2014.基于卫星资料的中国西部地区云垂直结构分析[J].高原气象, 33(4):977-987.
[33]Yin Y, Qu P, Jin L J, 2010. Vertical transport of CO, NO, NO<sub>x</sub>, and O<sub>3</sub> by tropical deep convective clouds[J]. Chinese J Atmos Sci, 34(5):925-936.<br/>银燕, 曲平, 金莲姬, 等, 2010.热带深对流云对CO, NO, NOx和O<sub>3</sub>的垂直输送作用[J].大气科学, 34(5):925-936.
[34]Yin J F, Wang D H, Zhai G Q, et al, 2013. A study of cloud vertical profiles from the Cloudsat data over the East Asian continent[J]. Acta Meteor Sinica, 71(1):121-133<br/>尹金方, 王东海, 翟国庆, 等, 2013.基于星载云雷达资料的东亚大陆云垂直结构特征分析[J].气象学报, 71(1):121-133.
[35]Zhang H, Yang B Y, Peng J, et al, 2015. The characteristics of cloud microphysical properties in East Asia with the CloudSat dataset[J]. Chinese J Atmos Sci, 39(2):235-248.<br/>张华, 杨冰韵, 彭杰, 等, 2015.东亚地区云微物理量分布特征的CloudSat卫星观测研究[J].大气科学, 39(2):235-248.
[36]Zhao S H, 2008. A study on the mesoscale and microscale structure in different types of clouds by TRMM satellite and Cloudsat satellite[D]. Nanjing:Nanjing University of Information Science and Technology.<br/>赵姝慧, 2008. 利用TRMM卫星和Cloudsat卫星对不同类型云系的中微尺度结构的研究分析[D]. 南京: 南京信息工程大学.
[37]Zheng Y G, Chen J, Zhu P J, 2008. Distributions and daily variations of Mesoscale Convective Systems over China and its neighborhood in summer[J]. Chinese Sci Bull, 53(4):471-481.<br/>郑永光, 陈炯, 朱佩君, 2008.中国及周边地区夏季中尺度对流系统分布及其日变化特征[J].科学通报, 53(4):471-481.
[38]National Meteorological Center, 2006. China meteorological geographic division[M]. Beijing:China Meteorological Press.<br/>中国气象局国家气象中心, 2006.中国气象地理区划手册[M].北京:气象出版社.
[39]Zhong S X, Wang D H, Zhang R H, et al, 2011. Vertical structure of convective cloud in a cold vortex over Northeastern China using CloudSat data[J]. J Appl Meteor Sci, 22(3):257-264.<br/>钟水新, 王东海, 张人禾, 等, 2011.基于CloudSat资料的冷涡对流云带垂直结构特征[J].应用气象学报, 22(3):257-264.
[40]Zhu Q G, Lin J R, Shou S W, 1981. Principles and methods of synoptic meteorology[M]. Beijing:China Meteorological Press.<br/>朱乾根, 林锦瑞, 寿绍文, 1981.天气学原理和方法[M].北京:气象出版社.