论文

基于HYSPLIT4的一次新疆天山夏季特大暴雨水汽路径分析

  • 姚俊强 ,
  • 杨青 ,
  • 毛炜峄 ,
  • 韩雪云
展开
  • 中国气象局乌鲁木齐沙漠气象研究所, 新疆 乌鲁木齐 830002;中亚大气科学研究中心, 新疆 乌鲁木齐 830002;新疆维吾尔自治区气候中心, 新疆 乌鲁木齐 830002

收稿日期: 2016-11-05

  网络出版日期: 2018-02-28

基金资助

国家自然科学基金项目(41605067,41375101);中国沙漠气象科学研究基金项目(Sqj2015012);中国博士后科学基金项目(2016M592874)

Analysis of a Summer Rainstorm Water Vapor Paths in Tianshan Mountains (Xinjiang) Based on HYSPLIT4 Model

  • YAO Junqiang ,
  • YANG Qing ,
  • MAO Weiyi ,
  • HAN Xueyun
Expand
  • Institute of Desert Meteorology, China Meteorological Administration, Urumqi 830002, Xinjiang, China;Central Asia Research Center of Atmosphere Science, Urumqi 830002, Xinjiang, China;Xinjiang Climate Central, Urumqi 830002, Xinjiang, China

Received date: 2016-11-05

  Online published: 2018-02-28

摘要

利用新疆维吾尔自治区105个观测站气象资料、NCEP/NCAR再分析资料,引入拉格朗日混合单粒子轨道模型(HYSPLIT_v4),定量分析了2004年7月17-21日新疆天山山区特大暴雨的水汽输送情况。结果表明,2004年7月17-21日暴雨降水主要以天山山区为主,暴雨过程的水汽主要来自700 hPa,水汽输送路径有3条,其中偏北路径有2条,另1条为偏西路径;暴雨的水汽源地主要有3个,其中超过50%的水汽来自阿拉伯海以北-里海-巴尔喀什湖地区的水汽输送贡献,其次是波罗的海-北冰洋沿岸地区,占到26%,而鄂霍次克海以东地区为21%;伊朗高压北抬与欧洲脊东移形成的乌拉尔脊叠加是暴雨过程的主导系统,中亚低涡东南移动形成强降水。同时,对流层高层的副热带西风急流和低层的偏东低空急流对强降水的水汽输送和辐合有重要影响。

本文引用格式

姚俊强 , 杨青 , 毛炜峄 , 韩雪云 . 基于HYSPLIT4的一次新疆天山夏季特大暴雨水汽路径分析[J]. 高原气象, 2018 , 37(1) : 68 -77 . DOI: 10.7522/j.issn.1000-0534.2017.00031

Abstract

By using the data from 105 meteorological stations in Xinjiang, the NCEP/NCAR data and the HYSPLIT4 Model, the water vapor transportation of the rainstorm occurring in the Tianshan Mountains, Xinjiang, on 17-21 July 2004 were analyzed quantitatively.The results show that the rainstorm mainly occurred in the Tianshan Mountain region; the Ural ridge isthe dominant systems in the process because of the development of Iran high and European ridge pile up.During the process of water vapor transport, it was significantly influenced by the combined action of the subtropical westerly jet and the east low-level jet.The water vapor mainly comes from the level of 700 hPa, there are three moisture transport paths at the level of 700 hPa, two in the north and another in west.Three water vapor sources have been found at 700 hPa.Water vapor coming from the region of Arabian Sea, Caspian Sea to Balkhash Lake has the maximum contribution rate (53%), followed by the Baltic Sea to the Arctic coast region (26%), and the Okhotsk Sea region contribute less relatively (21%).This indicates that the abnormal water vapor transpiration over the upstream areas provides with a good indication for the extreme precipitation.

参考文献

[1]Draxler R R, Hess G D, 1998.An overview of HYSPLIT_4 modeling system for trajectories dispersion and deposition[J].Aust Meteor Mag, 47:295-308.
[2]Huang Y, Cui X, 2015a.Moisture sources of an extreme precipitation event in Sichuan, China, based on the Lagrangian method[J].Atmos Sci Lett, 16(2):177-183.
[3]Huang W, Feng S, Chen J, et al, 2015b.Physical mechanisms of summer precipitation variations in the Tarim Basin in Northwestern China[J].J Climate, 28(9):3579-3591.
[4]Nieto R, Gimeno L, Trigo R, 2006.A Lagrangian identificantion of major sources of Sahel moisture[J].Geophy Res Lett, 33:L18707.
[5]Sodemann H, Schwierz C, Wernli H, 2008.Interannual variability of Greenland winter precipitation sources:Lagrangian moisture diagnostic and North Atlantic Oscillation influence[J].J Geophys Res, 113(D03):D03107.
[6]Starr V P, Peixoto J P, 1958.On the global balance of water vapor and the hydrology of deserts[J].Tellus, 10(2):189-194.
[7]Stohl A, Hittenberger M, Wotawa G, 1998.Validation of the Lagrangian particle dispersion model FLEXPART against large scale tracer experiment data[J].Atmos Environ, 32 (24):4245-4264.
[8]Trenberth K E, 1998.Atmospheric moisture residence times and cycling:implications for rainfall rates and climate change[J].Climatic Change, 39(4):667-649.
[9]Wernli H, 1997.A Lagrangian-based analysis of extratropical cyclones Ⅱ:A detailed case-study[J].Quart J Roy Meteor Soc, 123:1677-1706.
[10]Zhao Y, Huang A N, Zhou Y, et al, 2014.Impact of the middle and upper tropospheric cooling over Central Asia on the summer rainfall in the Tarim Basin[J].J Climate, 27:4721-4732.
[11]Zhao Y, Zhang H Q, 2016.Impacts of SST Warming in tropical Indian Ocean on CMIP5 model-projected summer rainfall changes over Central Asia[J].Climate Dyn, 46(9-10):3223-3238.
[12]Chen B, Xu X D, Shi X H, 2011.Estimating the water vapor transport pathways and associated sources of water vapor for the extreme rainfall event over east of China in July 2007 using the Lagrangian method[J].Acta Meteor Sinica, 69(5):810-818.<br/>陈斌, 徐祥德, 施晓晖, 2011.拉格朗日方法诊断2007年7月中国东部系列极端降水的水汽输送路径及其可能蒸发源区[J].气象学报, 69(5):810-818.
[13]Cai Y, Song M H, Qian Z A, et al, 2015.Reanalyses of precipitation circulation and vapor transportation of severe dry and wet events in summer in arid region of Northwest China[J].Plateau Meteor, 34(3):597-610.DOI:10.7522/j.issn.1000-0534.2015.00049.<br/>蔡英, 宋敏红, 钱正安, 等, 2015.西北干旱区夏季强干、湿事件降水环流及水汽输送的再分析[J].高原气象, 34(3):597-610.
[14]Li R Q, Tang Y, Rouzi A J, 2015.Atmospheric circulation and water vapor characteristics of snowstorm anomalies in Northern Xinjiang in 2010[J].Plateau Meteor, 34(1):155-162.DOI:10.7522/j.issn.1000-0534.2013.00163.<br/>李如琦, 唐冶, 肉孜·阿基, 2015.2010年新疆北部暴雪异常的环流和水汽特征分析[J].高原气象, 34(1):155-162.
[15]Jiang Z H, Liang Z R, Liu Z Y, et al, 2011.A diagnostic study of water vapor transport and budget during heavy precipitation over the Huaihe River Basin in 2007[J].Chinese J Atmos Sci, 35(2):361-372.<br/>江志红, 梁卓然, 刘征宇, 等, 2011.2007年淮河流域强降水过程的水汽输送特征分析[J].大气科学, 35(2):361-371.
[16]Jiang Z H, Ren W, Liu Z Y, et al, 2013.Analysis of water vapor transport characteristics during the Vleiyu over the Yangtze-Huaihe River valley using the Lagrangian method[J].Acta Meteor Sinica, 71(2):295-304.<br/>江志红, 任伟, 刘征宇, 等, 2013.基于拉格朗日方法的江淮梅雨水汽输送特征分析[J].气象学报, 71(2):295-304.
[17]Jiang J, Tan Y M, Li R Q, 2005.Diagnosis analysis of a heavy rainfall process in Xinjiang during July 2004[J].Xinjiang Meteor, 28(4):4-6.<br/>蒋军, 谭艳梅, 李如琦, 2005.2004年7月新疆特大暴雨过程的诊断分析[J].新疆气象, 28(4):4-6.
[18]Ma Y, Wang X, Tao Z Y, 1998.Study on vapor features of 96·7 heavy rainfall in Xinjiang[J].Xinjiang Meteor, 21(5):9-13.<br/>马禹, 王旭, 陶祖钰, 1998.新疆96-7特大暴雨水汽场特征综合研究[J].新疆气象, 21 (5):9-13.
[19]Wang J J, Wang C X, Chen C P, et al, 2015.Analysis of a summer rainstorm water vapor paths and sources in Sichuan Basin based on HYSPLIT4 model[J].Meteor Mon, 41(11):1315-1327.<br/>王佳津, 王春学, 陈朝平, 等, 2015.基于HYSPLIT4的一次四川盆地夏季暴雨水汽路径和源地分析[J].气象, 41(11):1315-1327.
[20]Yang H, Jiang Z H, Liu Z Y, et al, 2014.Analysis of climatic characteristics of water vapor transport based on the Lagrangian Method:A comparison between Meiyu in the Yangtze-Huaihe River region and the Huaibei rainy season[J].Chinese J Atmos Sci, 38 (5):965-973.<br/>杨浩, 江志红, 刘征宇, 等, 2014.基于拉格朗日法的水汽输送气候特征分析-江淮梅雨和淮北雨季的对比[J].大气科学, 38 (5):965-973.
[21]Yang L M, Zhang Q Y, 2007.Circulation characteristics of interannual and interdecadal anomalies of summer rainfall in north Xinjiang[J].Chinese J Geophys, 50(2):412-419.<br/>杨莲梅, 张庆云, 2007.新疆北部汛期降水年际和年代际异常的环流特征[J].地球物理学报, 50 (2):412-419.
[22]Yang L M, Li X, Zhang G X, 2011.Some advances and problems in the study of heavy rain in Xinjiang[J].Climatic Environ Res, 16(2):188-198.<br/>杨莲梅, 李霞, 张广兴, 2011.新疆夏季强降水研究若干进展及问题[J].气候与环境研究, 16(2):188-198.
[23]Yang L M, Yang Q, Yang L, 2014.Characteristics of the atmospheric moisture cycle over the Tianshan Mountains[J].Climatic Environ Res, 19(1):107-116.<br/>杨莲梅, 杨青, 杨柳, 2014.天山山区大气水分循环特征[J].气候与环境研究, 19(1):107-116.
[24]Yang L M, Liu W, 2016.Cause analysis of persistent heavy snow processes in the Northern Xinjiang[J].Plateau Meteor, 35(2):507-519.DOI:10.7522/j.issn.1000-0534.2014.00161.<br/>杨莲梅, 刘雯, 2016.新疆北部持续性暴雪过程成因分析[J].高原气象, 35(2):507-519.
[25]Yang L, Yang L M, Tang H, et al, 2013.Characteristics of water vapor transport over Tianshan Mountainous area from 2000 to 2011[J].Desert Oasis Meteor, 7(3):21-25.<br/>杨柳, 杨莲梅, 汤浩, 等, 2013.20002011年天山山区水汽输送特征[J].沙漠与绿洲气象, 7(3):21-25.
[26]Yang X, Zhang Y H, Zhao Y Z, et al, 2015.Analysis on rare snowstorm in west of Southern Xinjiang[J].Plateau Meteor, 34(5):1414-1423.DOI:10.7522/j.issn.1000-0534.2014.00063.<br/>杨霞, 张云惠, 赵逸舟, 等, 2015.南疆西部一次罕见大暴雪过程分析[J].高原气象, 34(5):1414-1423.
[27]Kong Y L, 2013. Quantifying recycled moisture fraction in precipitation of an arid region using deuterium excess[M]. Beijing: University Chinese Academy of Sciences.<br/>孔彦龙, 2013. 基于氘盈余的内陆干旱区水汽再循环研究[M]. 北京: 中国科学院大学博士学位论文.
[28]Yao J Q, Yang Q, Han X Y, et al, 2016.Quantifying recycled moisture fraction in precipitation of Tianshan Mountains[J].Desert Oasis Meteor, 10(5):37-43.<br/>姚俊强, 杨青, 韩雪云, 等, 2016.天山地区水汽再循环量化研究[J].沙漠与绿洲气象, 10(5):37-43.
[29]Zhang J B, Deng Z F, 1987.A generality of rainfall in Xinjiang[M].Beijing:China Meteorological Press.<br/>张家宝, 邓子风, 1987.新疆降水概论[M].北京:气象出版社.
[30]Zhang J L, Cui C X, Chen C Y, 2013.Study on water vapor characteristic of typical heavy snowstorm case in Northern Xinjiang[J].Plateau Meteor, 32(4):1115-1125.DOI:10.7522/j.issn.1000-0534.2012.00105.<br/>张俊兰, 崔彩霞, 陈春艳, 2013.北疆典型暴雪天气的水汽特征研究[J].高原气象, 32(4):1115-1125.
[31]Zhang Y H, Yu B X, Tan Y M, et al, 2016.Influence mechanism analysis of snow caused by two Central Asian vortexes in west of Southern Xinjiang in 2011[J].Plateau Meteor, 35(5):1307-1316.DOI:10.7522/j.issn.1000-0534.2015.00065.<br/>张云惠, 于碧馨, 谭艳梅, 等, 2016.2011年两次中亚低涡影响南疆西部降雪机制分析[J].高原气象, 35(5):1307-1316.
文章导航

/