[1]Atlas D, 1954. The estimation of cloud parameters by radar[J]. J Meteor, 11(4):309-317.
[2]Austin R T, Stephens G L, 2001. Retrieval of stratus cloud microphysical parameters using millimeter-wave radar and visible optical depth in preparation for CloudSat. Ⅰ-Algorithm formulation[J]. J Geophys Res, 106(D22):28233-28242.
[3]Austin R T, 2007. Level 2B radar-only cloud water content (2B-CWC-RO) process description document[J/OL]. CloudSat Data Processing Cent., Coop. Inst. for Res. in the Atmos., Colo. State Univ., Fort Collins. <a href="http://cloudsat.cira.colostate.edu/dataICDlist.php" target="_blank">http://cloudsat.cira.colostate.edu/dataICDlist.php</a>. [2016-07-14]
[4]Cadeddu M P, Liljegren J C, Turner D D, 2013. The Atmospheric Radiation Measurements (ARM) program network of microwave radiometers:instrumentation, data, and retrievals[J]. Atmospheric Measurement Techniques, 6(9):2359-2372. DOI:10. 5194/amt-6-2359-2013.
[5]Ware R, Cimini D, Herzegh P, et al, 2004. Ground-based microwave radiometer measurements during precipitation[C]//Rome, Italy: 8th Specialist Meeting on Microwave Radiometry, 24-27.
[6]Cornell D, Donahue C A, Keith C, 1995. A comparison of aircraft icing forecast models[R]. Air Force Combat Climatology Center Scott AFB IL.
[7]Crewell S, L?hnert U, 2003. Accuracy of cloud liquid water path from ground-based microwave radiometry 2. Sensor accuracy and synergy[J]. Radio Science, 38(3):8042. DOI:10. 1029/2002RS002634.
[8]Fox N I, Illingworth A J, 1997. The retrieval of stratocumulus cloud properties by ground-based cloud radar[J]. J Appl Meteor, 36(5):485-492.
[9]Han Q, Welch R, Chou J, et al, 1995. Validation of satellite retrievals of cloud microphysics and liquid water path using observations from FIRE[J]. J Atmos Sci, 52(23):4183-4195.
[10]Jolivet D, 2005. Quantification of the accuracy of liquid water path fields derived from NOAA 16 advanced very high resolution radiometer over three ground stations using microwave radiometers[J]. J Geophys Res, 110(D11):D11204. DOI:10. 1029/2004JD005205.
[11]Li J, Menzel W P, Zhang W, et al, 2004. Synergistic use of MODIS and AIRS in a variational retrieval of cloud parameters[J]. J Appl Meteor, 43(11):1619-1634.
[12]Li J, Wolf W W, Menzel W P, et al, 2000. Global soundings of the atmosphere from ATOVS measurements:The algorithm and validation[J]. J Appl Meteor, 39(8):1248-1268.
[13]Li L, Heymsfield G M, Tian L, et al, 2005. Measurements of ocean surface backscattering using an airborne 94-GHz cloud radar-Implication for calibration of airborne and spaceborne W-band radars[J]. J Atmos Ocean Technol, 22(7):1033-1045.
[14]Liljegren J C, 2002. Microwave radiometer profiler handbook[M]. Washington D C:Manual, Argonne National Laboratory.
[15]Matrosov S Y, Uttal T, Hazen D A, 2004. Evaluation of radar reflectivity-based estimates of water content in stratiform marine clouds[J]. J Appl Meteor, 2004, 43(3):405-419.
[16]Mattioli V, Westwater E R, Cimini D, et al, 2007. Analysis of radiosonde and ground-based remotely sensed PWV data from the 2004 North Slope of Alaska Arctic Winter Radiometric Experiment[J]. J Atmos Ocean Technol, 24(3):415-431.
[17]Miles N L, Verlinde J, Clothiaux E E, 2000. Cloud droplet size distributions in low-level stratiform clouds[J]. J Atmos Sci, 57(2):295-311.
[18]Pazmany A L, Sekelsky J B M S M, McLaughlin D J, et al, 2001. 2B. 1 multi-frequency radar estimation of cloud and precipitation properties using an artificial neural network[C]//Conference on Radar Meteorology of the American Meteorological Society. American Meteorological Society, 30: 154-156.
[19]Rodgers C D, 2000. Inverse methods for atmospheric sounding:Theory and practice[M]. Singapore:World scientific.
[20]Sauvageot H, Omar J, 1987. Radar reflectivity of cumulus clouds[J]. J Atmos Ocean Technol, 4(2):264-272.
[21]Somerville R C J, Remer L A, 1984. Cloud optical thickness feedbacks in the C<i>O</i><sub>2</sub> climate problem[J]. J Geophys Res, 89(D6):9668-9672.
[22]Stokes G M, Schwartz S E, 1994. The Atmospheric Radiation Measurement (ARM) program:Programmatic background and design of the cloud and radiation test bed[J]. Bull Amer Meteor Soc, 75(7):1201-1221.
[23]Greenwald T J, Christopher S A, Chou J, et al, 1999. Intercomparison of cloud liquid water path derived from the GOES 9 imager and ground based microwave radiometers for continental stratocumulus[J]. J Geophys Res, 104(D8):9251-9260.
[24]Turner D D, Clough S A, Liljegren J C, et al, 2007. Retrieving liquid water path and precipitable water vapor from the Atmospheric Radiation Measurement (ARM) Microwave Radiometers[J]. IEEE Trans Geosci Remote Sens, 45(11):3680-3690.
[25]Wang L, Li C, Yao Z, et al, 2014. Application of aircraft observations over Beijing in cloud microphysical property retrievals from CloudSat[J]. Adv Atmos Sci, 31(4):926-937.
[26]Westwater E R, 1978. The accuracy of water vapor and cloud liquid determination by dual-frequency ground-based microwave radiometry[J]. Radio Science, 13(4):677-685.
[27]Yao Z, Li J, Han H J, et al, 2012. Asian dust height and infrared optical depth retrievals over land from hyperspectral longwave infrared radiances[J]. J Geophys Res, 117(D19):D19202. DOI:10. 1029/2012JD017799.
[28]Feng W W, Yao Z G, Han Z G, et al, 2009. Analysis of the cloud liquid water path from satellite-borne millimeter wave cloud Radar[J]. Journal of PLA University of Science and Technology (Natural Science Edition), 10(Suppl1):95-102.<br/>冯伟伟, 姚志刚, 韩志刚, 等, 2009.星载毫米波云雷达反演液态水云含水量的算法性能分析[J].解放军理工大学学报(自然科学版), 10(增刊1):95-102.
[29]Jiang F, Wei C, Lei H C, et al, 2004. Measurement of column cloud liquid water content by airborne upward-looking microwave radiometer (Ⅱ):Retrieval method[J]. Plateau Meteor, 23(1):33-39.<br/>江芳, 魏重, 雷恒池, 等, 2004.机载微波辐射计测云中液态水含量(Ⅱ):反演方法[J].高原气象, 23(1):33-39.
[30]Liu L P, Zhou M, 2016. Characteristics of bright band and automatic detection algorithm with vertical pointed Ka band cloud Radar[J]. Plateau Meteor, 35 (3):734-744. DOI:10. 7522/j. issn. 1000-0534. 2014. 00160.<br/>刘黎平, 周淼, 2016.垂直指向的Ka波段云雷达观测的0℃层亮带自动识别及亮带的特征分析[J].高原气象, 35 (3):734-744.
[31]Peng L, Chen H B, Li B, 2011. An application of Fuzzy Logic Method to cloud hydrometeor classifications using the ARM WACR data[J]. Remote Sensing Technology and Application, 36(1):1-10.<br/>彭亮, 陈洪滨, 李柏, 2011.模糊逻辑法在3mm云雷达反演云中水凝物粒子相态中的应用[J].遥感技术与应用, 36(1):1-10.
[32]Peng L, Chen H B, Li B, 2012. A case study of deriving vertical airs velocity from 3-mm cloud radar[J]. Chinese J Atmos Sci, 36(1):1-10.<br/>彭亮, 陈洪滨, 李柏, 2012. 3 mm多普勒云雷达反演云内空气垂直速度的研究[J].大气科学, 36(1):1-10.
[33]Qiu Y J, Yang H W, Ni T, et al, 2012. Cloud property analysis by using DOE AMF measurements in Shouxian of China[J]. Trans Atmos Sci, 35(1):80-86.<br/>邱玉珺, 杨会文, 倪婷, 等, 2012.基于美国AMF寿县观测的云特性研究[J].大气科学学报, 35(1):80-86.
[34]Wang L, Li C C, Zhao Z L, et al, 2014. Application of 2D habit classification in cloud microphysics analysis[J]. Chinese J Atmos Sci, 38 (2):201-212.<br/>王磊, 李成才, 赵增亮, 等, 2014.二维粒子形状分类技术在云微物理特征分析中的应用[J].大气科学, 38 (2):201-212.
[35]Wang S H, Han Z G, Yao Z G, et al, 2011. Analysis on cloud vertical structure over China and its neighborhood based on CloudSat Data[J]. Plateau Meteor, 30 (1):38-52.<br/>王帅辉, 韩志刚, 姚志刚, 等, 2011.基于CloudSat资料的中国及周边地区云垂直结构统计分析[J].高原气象, 30 (1):38-52.
[36]Wu J X, Wei M, Zhou J, 2014. Simulated calculation of backscattering characteristics of hexagonal ice crystals with 94 GHz Radar[J]. Plateau Meteor, 33(1):252-260. DOI:10. 7522/j. issn. 1000-0534. 2013. 00003.<br/>吴举秀, 魏鸣, 周杰, 2014.六角形冰晶的94 GHz毫米波后向散射特性的模拟计算分析[J].高原气象, 33(1):252-260.
[37]Yao Z Y, Wang G H, You L G, et al, 2001. Microwave remote sensing of cloud liquid water path over Shouxiang[J]. J Appl Meteor Sci, 12(Suppl1):88-95.<br/>姚展予, 王广河, 游来光, 等, 2001.寿县地区云中液态水含量的微波遥感[J].应用气象学报, 12(增刊1):88-95.
[38]Ye P L, Wang T H, Shang K Z, et al, 2014. Analysis of cloud vertical structure over western China based on active satellite data[J]. Plateau Meteor, 33(4):977-987. DOI:10. 7522/j. issn. 1000-0534. 2013. 00158.<br/>叶培龙, 王天河, 尚可政, 等, 2014.基于卫星资料的中国西部地区云垂直结构分析[J].高原气象, 33(4):977-987.
[39]Zhang Y P, Zhang W X, Lü D R, et al, 2014. Cloud top heights measured by METOP-A IASI Instrument compared with ground-based cloud radar[J]. Chinese J Atmos Sci, 38 (5):874-884.<br/>张艳品, 章文星, 吕达仁, 等, 2014.卫星(IASI探测仪)观测云顶高与地基云雷达观测的对比验证[J].大气科学, 38 (5):874-884.
[40]Zhang W X, Lü D R, 2012. Cloud base heights by ground based sky IR brightness temperature measurements compared with Cloud radar and Ceilometer in Shouxian[J]. Chinese J Atmos Sci, 36(4):657-672.<br/>章文星, 吕达仁, 2012.地基热红外云高观测与云雷达及激光云高仪的相互对比[J].大气科学, 36(4):657-672.