论文

重霾天气气溶胶辐射效应对近地面臭氧峰值的影响

  • 刘姝岩 ,
  • 包云轩 ,
  • 金建平 ,
  • 刘诚 ,
  • 许建明 ,
  • 李建民 ,
  • 黄建平
展开
  • 南京信息工程大学气象灾害预报预警与评估协同创新中心, 江苏 南京 210044;耶鲁大学-南京信息工程大学大气环境中心, 江苏 南京 210044;昆山市气象局, 江苏 昆山 215300;上海市气象局浦东新区气象局, 上海 200120;南城县气象局, 江西 南城 344700

收稿日期: 2016-07-05

  网络出版日期: 2018-02-28

基金资助

国家自然科学基金项目(41575009);江苏省科技支撑计划(BE2014734);国家公益性行业(气象)科研专项(GYHY201306043,GYHY201406029);昆山市社会发展科技计划项目(KS1459)

Impact of Aerosol Radiative Effect on Surface Ozone Peaks during Heavy Haze Events

  • LIU Shuyan ,
  • BAO Yunxuan ,
  • JIN Jianping ,
  • LIU Cheng ,
  • XU Jianming ,
  • LI Jianmin ,
  • HUANG Jianping
Expand
  • Collaborative Innovation Center on Forecast Meteorological Disaster Warning and Assessment, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China;Yale-NUIST Center on Atmospheric Environment, NUIST, Nanjing 210044, Jiangsu, China;Meteorological Bureau of Kunshan, Kunshan 215300, Jiangsu, China;Meteorological Bureau of Pudong, Shanghai 200120, China;Meteorological Bureau of Nanchengxian, Nancheng 344700, Jiangxi, China

Received date: 2016-07-05

  Online published: 2018-02-28

摘要

重度灰霾(或重霾)条件下,大气气溶胶颗粒物显著衰减到达地表的太阳紫外辐射,对臭氧O3光化学过程形成产生重要影响。通过对2013年12月1-10日发生在长三角地区的一次重霾过程进行详尽分析,结合对流层紫外和可见光模型(TUV)及NCAR箱式模型(MM),探讨气溶胶辐射效应对地面臭氧形成和浓度峰值的影响。研究表明,区域输送、稳定边界层累积和二次气溶胶过程等是导致本次重霾发生的主要原因;重霾条件下,臭氧光化学反应明显减弱,臭氧日峰值明显降低,但光化学反应仍缓慢进行;受各种因素如区域输送、边界层累积效应及二次气溶胶等过程影响,臭氧浓度随细颗粒物PM10浓度升高而缓慢上升。TUV和MM模拟结果与观测吻合较好,模拟结果进一步显示,当气溶胶光学厚度AOD由0.8增加到2.0时,到达地表的紫外辐射衰减63%,地面臭氧峰值浓度降低近83%,表明随着灰霾污染加重,近地层臭氧浓度有所降低。

本文引用格式

刘姝岩 , 包云轩 , 金建平 , 刘诚 , 许建明 , 李建民 , 黄建平 . 重霾天气气溶胶辐射效应对近地面臭氧峰值的影响[J]. 高原气象, 2018 , 37(1) : 296 -304 . DOI: 10.7522/j.issn.1000-0534.2016.00141

Abstract

Aerosols attenuate solar ultraviolet radiation, and exert an important impact on surface ozone formation during heavy haze events. This observational analysis was combined with the simulations of TUV (Troposphere Ultraviolet and Visible radiation) model and NCAR MM model (Master Mechanism Box model, MM) to quantify the impact of aerosol radiative effect on surface ozone concentrations during a heavy haze event in Yangtze River Delta region of China from 1 to 10 December, 2013. The results indicate that regional transport, trapping effect of the stable boundary layer, and the secondary formation processes were responsible for the occurrence of the heavy haze event. During the heavy haze event, O3 photochemical reactions were significantly slowed down, daily peak values were substantially decreased while photochemical reactions proceeded slowly. O3 concentrations showed a slowly increasing trend with increasing aerosol concentrations due to the combined effect of the regional transport, the stable boundary layer, and the secondary aerosol formation processes. The TUV and MM model simulations were matched well with the observations. The surface-reaching ultraviolet radiation and ozone peak concentration were reduced by 63% and 83%, respectively, when the aerosol optical depth (AOD) was increased from 0.8 to 2.0 which indicated that heavy haze events may alleviate the surface ozone pollution.

参考文献

[1]Atkinson R, 2000. Atmospheric chemistry of VOCs and NOx[J]. Atmos Environ, 34(12-14):2063-2101.
[2]Bian H, Han S, Tie X, et al, 2007. Evidence of impact of aerosols on surface ozone concentration in Tianjin, China[J]. Atmos Environ, 41(22):4672-4681.
[3]Castro T, Madronich S, Mar B, et al, 2001. The influence of aerosols on photochemical smog in Mexico City[J]. Atmos Environ, 35(10):1765-1772.
[4]Coulter R L, 1979. A comparison of three methods for measuring mixing-layer height[J]. J Appl Meteor, 18:11(11):1495-1499.
[5]Desqueyroux H, Pujet J C, Prosper M, et al, 2002. Short-term effects of low-level air pollution on respiratory health of adults suffering from moderate to severe asthma[J]. Environ Res, 89(1):29-37.
[6]Dickerson R R, Kondragunta S, Stenchikov G, et al, 1997. The impact of aerosols on solar ultraviolet radiation and photochemical smog[J]. Science, 278(5339):827-830.
[7]Fishman J, Solomon S, Crutzen P J, 1979. Observational and theoretical evidence in support of a significant in-situ photochemical source of tropospheric ozone[J]. Tellus A, 31(5):432-446.
[8]Flynn J, Lefer B, Rappenglück B, et al, 2010. Impact of clouds and aerosols on ozone production in Southeast Texas[J]. Atmos Environ, 44(33):4126-4133.
[9]Jacobson M Z, 1998. Studying the effects of aerosols on vertical photolysis rate coefficient and temperature profiles over an urban airshed[J]. J Geophys Res, 103(D9):10593-10604
[10]Kleinman L I, 2000. Ozone process insights from field experiments-part Ⅱ:Observation-based analysis for ozone production[J]. Atmos Environ, 34(1):2023-2033.
[11]Li G, Zhang R, Fan J, et al, 2005. Impacts of black carbon aerosol on photolysis and ozone[J]. J Geophys Res:Atmospheres(19842012), 110(D23):3233-3250.
[12]Liao H, Adams P J, Chung S H, et al, 2003. Interactions between tropospheric chemistry and aerosols in a unified general circulation model[J]. J Geophys Res:Atmospheres(1984-2012), 108(D1):AAC 1-1-AAC 1-23.
[13]Madronich S, Flocke S, 1999. The role of solar radiation in atmospheric chemistry[M]. Environmental Photochemistry. Springer Berlin Heidelberg, 1-26.
[14]Madronich S, Calvert J, 1990. Permutation reactions of organic peroxy radicals in the troposphere[J]. J Geophys Res, 95(D5):5607-5715.
[15]Nishanth T, Praseed K M, Kumar M K S, et al, 2014. Influence of ozone precursors and PM<sub>10</sub> on the variation of surface O<sub>3</sub> over Kannur, India[J]. Atmos Res, 138(3):112-124.
[16]Oksanen E, Holopainen T, 2001. Responses of two birch (Betula pendula Roth) clones to different ozone profiles with similar AOT40 exposure[J]. Atmos Environ, 35 (31):5245-5254.
[17]Tyndall G S, Cox R A, Granier C, et al, 2001. Atmospheric chemistry of small organic peroxy radicals[J]. J Geophys Res:Atmospheres (1984-2012), 106(D11):12157-12182.
[18]Tie X, Madronich S, Li G H, et al, 2007. Characterizations of chemical oxidants in Mexico City:A regional chemical dynamical model (WRF-Chem) study[J]. Atmos Environ, 41(9):1989-2008.
[19]Wang Y Q, 2014. MeteoInfo:GIS software for meteorological data visualization and analysis[J]. Meteor Appl, 21(2):360-368.
[20]Xu J, Zhang Y, Wang W, 2006. Numerical study on the impacts of heterogeneous reactions on ozone formation in the Beijing urban area[J]. Adv Atmos Sci, 23(4):605-614.
[21]An J L, 2007. Study on Beijing atmospheric ozone concentration variation characteristics and its formation mechanism[D]. Nanjing: Nanjing University of Information Science and Technology.<br/>安俊琳, 2007. 北京大气臭氧浓度变化特征及其形成机制研究[D]. 南京: 南京信息工程大学.
[22]An J L, Wang Y S, Li X, et al, 2008. Relationship between surface UV radiation and air pollution in Beijing[J]. Chinese J Environ Sci, 29(4):1053-1058.<br/>安俊琳, 王跃思, 李昕, 等, 2008.北京地面紫外辐射与空气污染的关系研究[J].环境科学, 29(4):1053-1058.
[23]Bai J H, Xu Y F, Chen H, et al, 2003. The variation characteristics and analysis of ozone and its precursors in the Dinghushan mountain forest Area[J]. Climat Environ Res, 8(3):370-380.<br/>白建辉, 徐永福, 陈辉, 等, 2003.鼎湖山森林地区臭氧及其前体物的变化特征和分析[J].气候与环境研究, 8(3):370-380.
[24]Cai Y F, Wang T J, Xie M, et al, 2013. Impacts of atmospheric particles on surface ozone in Nanjing[J]. Climat Environ Res, 18(2):251-260.<br/>蔡彦枫, 王体健, 谢旻, 等, 2013.南京地区大气颗粒物影响近地面臭氧的个例研究[J].气候与环境研究, 18(2):251-260.
[25]Du C L, Tang X, Li X M, et al, 2014. Calculations of planetary boundary layer height and its relationship with particle size concentration in Xi' an city[J]. Plateau Meteor, 33(5):1383-1392. DOI:10. 7522/j. issn. 1000-0534. 2013. 00077.<br/>杜川利, 唐晓, 李星敏, 等, 2014.城市边界层高度变化特征与颗粒物浓度影响分析[J].高原气象, 33(5):1383-1392.
[26]Deng X J, Zhou X J, Wu D, et al, 2011. Impacts of atmospheric particles on surface ozone in the Pearl River Delta[J]. Sci Sinica Terrae, 41(1):93-102.<br/>邓雪娇, 周秀骥, 吴兑, 等, 2011.珠江三角洲大气气溶胶对地面臭氧变化的影响[J].中国科学:地球科学, 41(1):93-102.
[27]邓雪娇, 周秀骥, 铁学熙, 等, 2012.广州大气气溶胶对到达地表紫外辐射的衰减[J].科学通报, 57(18):1684-1691.
[28]Deng X J, Zhou X J, Tie X X, et al, Attenuation of ultraviolet radiation reaching the surface due to atmospheric aerosols in Guangzhou[J]. Sci Bull, 57(18):1684-1691.
[29]Deng X L, Shi C E, Yao C, et al, 2015. Research of reconstruction and characteristies of hazes in Anhui[J]. Plateau Meteor, 34(4):1158-1166. DOI:10. 7522/j. issn. 1000-0532. 2014. 00007.<br/>邓学良, 石春娥, 姚晨, 等, 2015.安徽霾日重建和时空特征分析[J].高原气象, 34(4):1158-1166.
[30]Li S B, Wu T W, Zhang J, et al, 2015. Simulation study about climatological Basic State and seasonal variations of Globel O<sub>3</sub> in the 20<sup>th</sup> century[J]. Plateau Meteor, 34(6):1601-1615. DOI:10. 7522/j. issn. 1000-0534. 2014. 00199.<br/>李书博, 吴统文, 张洁, 等, 2015. BCC-AGCM-Chem0模式对20世纪全球O<sub>3</sub>气候平均态及季节变化特征的模拟研究[J].高原气象, 34(6):1601-1605.
[31]Liu Q, 2012. Study on the impacts of aerosols on surface ozone in ShangHai[D]. Shanghai: ShangHai DongHua University.<br/>刘琼, 2012. 上海地区气溶胶对近地面臭氧的影响研究[D]. 上海: 上海东华大学.
[32]Liu J M, Ding Y G, Huang Y D, et al, 2003. Correlation analyses between intensity of solar ultraviolet radiation and meteorological elements[J]. Plateau Meteor, 22(1):45-50.<br/>刘晶淼, 丁裕国, 黄永德, 等, 2003.太阳紫外辐射强度与气象要素的相关分析[J].高原气象, 22(1):45-50.
[33]Tang X Y, 1990. Atmospheric environmental chemistry[M]. Beijing:Higher Education Press, 739.<br/>唐孝炎, 1990.大气环境化学[M].北京:高等教育出版社, 739.
[34]Wang J, Shi R H, Li L, et al, 2015. Characteristics and formation mechanism of a heavy air pollution episode in Shanghai[J]. Acta Scientiae Circumstantiae, 35(5):1537-1546.<br/>王静, 施润和, 李龙, 等, 2015.上海市一次重雾霾过程的天气特征及成因分析[J].环境科学学报, 35(5):1537-1546.
[35]Zhang F, Wu T W, Zhang J, et al, 2016. Variations of tropospheric ozone in the 20<sup>th</sup> century simulated BCC-AGCM-Chem0 model[J]. Plateau Meteor, 35(1):158-171. DOI:10. 7522/j. issn. 1000-0534. 2014. 00118.<br/>张芳, 吴统文, 张洁, 等, 2016. BCC-AGCM-Chem0模式对20世纪对流层臭氧变化趋势的模拟研究[J].高原气象, 35(1):158-171.
文章导航

/