论文

青藏高原及周边地区垂直温度梯度特征及其成因分析

  • 程译萱 ,
  • 范广洲 ,
  • 张永莉 ,
  • 赖欣
展开
  • 成都信息工程大学大气科学学院/高原大气与环境四川省重点实验室/气候与环境变化联合实验室, 四川 成都 610225;南京信息工程大学气象灾害预报预警与评估协同创新中心, 江苏 南京 210044

收稿日期: 2017-04-11

  网络出版日期: 2018-04-28

基金资助

国家自然科学基金项目(91537214,41275079,41305077,41305042,41405069,41505078);公益性(气象)行业科研专项(GYHY201506001);四川省教育厅重点项目(16ZA0203);成都信息工程大学中青年学术带头人科研基金项目(J201516,J201518)

Analysis of Vertical Temperature Gradient Characteristics and Its Causes over Qinghai-Tibetan Plateau and Its Surroundings

  • CHENG Yixuan ,
  • FAN Guangzhou ,
  • ZHANG Yongli ,
  • LAI Xin
Expand
  • School of Atmospheric Sciences/Plateau Atmosphere and Environment Key Laboratory of Sichuan Province/Joint Laboratory of Climate and Environment Change, Chengdu University of Information Technology, Chengdu 610225, Sichuan China;Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China

Received date: 2017-04-11

  Online published: 2018-04-28

摘要

利用1980-2015年ERA-Interim全球0.25°×0.25°月平均再分析温度场、风场、垂直速度场资料,分析了青藏高原(下称高原)上空垂直温度梯度(TG)特征及其成因。结果表明:(1)高原主体地区温度随高度升高而降低的程度要比周边地区大,东西两侧的温度随高度升高而降低得慢;(2)对流层中下层高原边缘陡峭地形区的TG变化程度比周边地区大,对流层中上层各层TG呈水平均匀分布;(3)非高原地区温度随高度升高而降低的程度略大于高原地区;在冬春季,两个区域的TG对外界因素变化的反应都很灵敏;(4)初步成因分析显示,对流层中下层高原边缘地区,非绝热加热(冷却)作用越强时,TG越小(大),温度随高度升高而降低的程度就越小(大);对流层中上层,高原部分区域非绝热加热(冷却)作用越强,TG越大(小),温度随高度升高而降低的程度越大(小);在高原整层大气中,非绝热加热(冷却)作用是引起温度随高度升高而降低得慢(快)的主要因素。

本文引用格式

程译萱 , 范广洲 , 张永莉 , 赖欣 . 青藏高原及周边地区垂直温度梯度特征及其成因分析[J]. 高原气象, 2018 , 37(2) : 333 -348 . DOI: 10.7522/j.issn.1000-0534.2017.00057

Abstract

Based on the ERA-Interim monthly mean reanalysis data of temperature field, wind filed and vertical velocity field from 1980 to 2015, the characteristics of Qinghai-Tibetan Plateau (QTP) temperature gradient (TG) and its causes were studied. The results show:(1) The decreased degree of the temperature in the major region of QTP decreases faster with the rise of the altitude than that in the surrounding areas, and the temperature on both sides of the plateau decreases lower with the rise of the altitude. (2) The change degree of TG in the lower troposphere in the steep terrain area at the edge of QTP is greater than that in the surrounding areas, and TG in the upper-middle troposphere is in horizontal uniform distribution. (3) The decreased degree of the temperature in the non-plateau region decreases with the rise of the altitude, which is slightly higher than that in the plateau region; In winter and spring, TG in the both regions is sensitive to changes in external factors. (4) The initial cause analysis revealed that at the edge of plateau region in the lower troposphere, the stronger the effect of the non-adiabatic heating (cooling), the smaller (larger) the TG, and the smaller (larger) the reduced degree of the temperature decreased with the rise of the altitude; In the upper-middle troposphere, the stronger the effect of non-adiabatic heating (cooling) in some regions of the plateau, the larger (smaller) the TG, and the larger (smaller) the reduced degree of the temperature decreased with the rise of the altitude; The non-adiabatic heating (cooling) is the main factor that causes the temperature to decrease slowly (quickly) with the rise of the altitude in the whole atmosphere of the plateau.

参考文献

[1]Duan A M, Liu Y M, Wu G X, 2005. Heating status of the Tibetan Plateau from April to June and rainfall and atmospheric circulation anomaly over East Asia in midsummer[J]. Sci China Earth Sci, 48(2):250-257. DOI:10.1360/02yd0510.
[2]Duan A M, Wang M R, Lei Y H, et al, 2013. Trends in Summer Rainfall over China Associated with the Tibetan Plateau Sensible Heat Source during 19802008[J]. J Climate, 26(1):261-275. DOI:10.1175/JCLI-D-11-00669.1.
[3]Yanai M, Esbensen S, Chu J H, 1973. Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets[J]. J Atmos Sci, 30(4):611-627.
[4]Duan A M, Wu G X, 2005. The relationship between the interannual variability of air temperature over the Tibetan Plateau and the northern hemispheric annular wave pattern[J]. Acta Meteor Sinica, 63(5):790-798. DOI:10.3321/j.issn:0577-6619.2005.05.022.<br/>段安民, 吴国雄, 2005.青藏高原气温的年际变率与大气环状波动模[J].气象学报, 63(5):790-798.
[5]Duan S R, Fan G Z, Hua W, et al, 2015. An analysis on upper-air temperature over the Tibetan Plateau during 19792013[J]. Journal of Chengdu University of Information Technology, 30(6):586-592. DOI:10.3969/j.issn. 1671-1742.2015.06.013.<br/>段思汝, 范广洲, 华维, 等, 2015.1979-2013年青藏高原上空温度变化特征[J].成都信息工程学院报, 30(6):586-592.
[6]Fan G Z, Hua W, Huang X L, et al, 2008. Advances of the study on influence of vegetation change over Tibetan Plateau on regional climate[J]. Plateau Mountain Meteor Res, 28(1):72-80. DOI:10.3969/j.issn. 1674-2184.2008.01.013.<br/>范广洲, 华维, 黄先伦, 等, 2008.青藏高原植被变化对区域气候影响研究进展[J].高原山地气象研究, 28(1):72-80.
[7]Huang F F, Ma W Q, Li M S, et al, 2016. Analysis on responses of land surface temperature on the Northern Tibetan Plateau to climate change[J]. Plateau Meteor, 35(1):55-63. DOI:10.7522/j.issn. 1000.0534.2015.00075.<br/>黄芳芳, 马伟强, 李茂善, 等, 2016.藏北高原地表温度对气候变化响应的初步分析[J].高原气象, 35(1):55-63.
[8]Huang R H, 1985. The influence of the heat source anomaly over Tibetan Plateau on the Northern Hemispheric circulation anomalies[J]. Acta Meteor Sinica, 43(2):82-94. DOI:10.11676/qxxb1985.026.<br/>黄荣辉, 1985.夏季青藏高原上空热源异常对北半球大气环流异常的作用[J].气象学报, 43(2):82-94.
[9]Li G P, 2002. Dynamic meteorology of the Tibetan Plateau[M]. Beijing:China Meteorological Press, 69-70.<br/>李国平, 2002.青藏高原动力气象学[M].北京:气象出版社, 69-70.
[10]Li Q Y, Xie Z C, 2006. Analyses on the characteristics of the vertical lapse rates of temperature——Taking Tibetan Plateau and its adjacent area as an example[J]. Journal of Shihezi University (Natural Science), 24(6):719-723. DOI:10.3969/j.issn. 1007-7383.2006.06.016.<br/>李巧媛, 谢自楚, 2006.高原区气温垂直递减率的分布及其特点分析——以青藏高原及其周边地区为例[J].石河子大学学报(自科版), 24(6):719-723.
[11]Li Y F, Hu J G, Ren C R, 2017. A case study of the Northern Hemisphere stratospheric sudden warming in the winter of 2009[J]. Plateau Meteor, 36(6):1576-1586. DOI:10.7522/j.issn. 1000-0534.2017.00003.<br/>李亚飞, 胡景高, 任荣彩, 2017.2009年冬季北半球平流层爆发性增温的个例分析[J].高原气象, 36(6):1576-1586.
[12]Liu Y F, Li G P, 2016. The climate characteristics of atmospheric heat source over the Tibetan Plateau and its possible relationship with the generation of the Tibetan Plateau Vortex in summer[J]. Chinese J Atmos Sci, 40(4):864-876. DOI:10.3878/j.issn. 1006-9895.1512.15184.<br/>刘云丰, 李国平, 2016.夏季高原大气热源的气候特征以及与高原低涡生成的关系[J].大气科学, 40(4):864-876.
[13]Lü S N, Li D L, Wen J, et al, 2010. Analysis on periodic variations and abrupt change of air temperature over Qinghai-Xizang Plateau under global warming[J]. Plateau Meteor, 29(6):1378-1385.<br/>吕少宁, 李栋梁, 文军, 等, 2010.全球变暖背景下青藏高原气温周期变化与突变分析[J].高原气象, 29(6):1378-1385.
[14]Niu T, Chen L X, Wang W, 2002. REOF analysis of climatic characteristics of winter temperature and humidity on Xizang-Qinghai Plateau[J]. J Appl Meteor Sci, 13(5):560-570. DOI:10.3969/j.issn. 1001-7313.2002.05.005.<br/>牛涛, 陈隆勋, 王文, 2002.青藏高原冬季平均温度、湿度气候特征的REOF分析[J].应用气象学报, 13(5):560-570.
[15]Qiao Y, 2014. The temperature anomaly averaged in the troposphere of Tibetan Plateau and its effects on subtropical westerly jet center over the Tibetan Plateau in spring[D]. NanJing: NanJing University of Information Sciences &amp; Technology, 12-22.<br/>乔钰, 2014. 青藏高原对流层温度扰动异常及其对春季高原上空副热带西风急流的影响[D]. 南京: 南京信息工程大学, 12-22.
[16]Tang M C, Li C Q, Li J, 1988. Recent climatic changes in the Tibetan Plateau and its vicinity[J], V7(1): 39-49.<br/>汤懋苍, 李存强, 张建, 1988. 青藏高原及其四周的近代气候变化[J]. 高原气象, V7(1): 39-49.
[17]Wang Q, 2006. Researches on climatic character of Tibetan Plateau heat sources and relations between its anomalies and general circulation (China climate) anomaly[D]. NanJing: NanJing University of Information Sciences &amp; Technology, 12-45.<br/>王群, 2006. 春季青藏高原热源的气候特征及其异常与大气环流和我国气候关系的研究[D]. 南京: 南京信息工程大学, 12-45.
[18]Wang Q, Guo P W, Zhou H W, et al, 2001. Climatic character of heat sources in Tibetan Plateau[J]. J Meteor Sci, 31(2):179-186. DOI:10.3969/j.issn. 1009-0827.2011.02.008.<br/>王群, 郭品文, 周宏伟, 等, 2001.春季青藏高原地区大气热源的气候特征分析[J].气象科学, 31(2):179-186.
[19]Wu G X, Liu X, Zhang Q, et al, 2002. Progresses in the study of the climate impacts of the elevated heating over the Tibetan Plateau[J]. Climatic Environ Res, 7(2):184-201. DOI:10.3878/j.issn. 1006-9585.2002.02.06.<br/>吴国雄, 刘新, 张琼, 等, 2002.青藏高原抬升加热气候效应研究的新进展[J].气候与环境研究, 7(2):184-201.
[20]Wu G X, Liu Y M, Liu X, et al, 2005. How the heating over the Tibetan Plateau affects the Asian climate in summer[J]. Chinese J Atmos Sci, 29(1):47-56. DOI:10.3878/j.issn. 1006-9895.2005.01.06.<br/>吴国雄, 刘屹岷, 刘新, 等, 2005.青藏高原加热如何影响亚洲夏季的气候格局[J].大气科学, 29(1):47-56.
[21]Wu P P, Zhou S W, Qiao Y, et al, 2016. Anomaly characteristics of spring and summer temperature in troposphere over Tibetan Plateau[J]. Meteor Sci Technol, 44(4):612-621. DOI:10.3969/j.issn. 1671-6345.2016.04.015.<br/>吴裴裴, 周顺武, 乔钰, 等, 2016.青藏高原春夏季对流层温度异常特征[J].气象科技, 44(4):612-621.
[22]Xia X, Ren R C, Wu G X, et al, 2016. An analysis on the spatio-temporal variations and dynamic effects of the tropopause and related stratosphere-troposphere coupling surrounding the Tibetan Plateau area[J]. Acta Meteor Sinica, 74(4):525-541. DOI:10.11676/qxxb2016.036.<br/>夏昕, 任荣彩, 吴国雄, 等, 2016.青藏高原周边对流层顶的时空分布、热力成因及动力效应分析[J].气象学报, 74(4):525-541.
[23]Xu A L, Zhou A H, Sun J H, et al, 2016. Vertical structure characteristic from troposphere to low stratosphere in Dali region over the southeastern margin of Qinghai-Xizang Plateau[J]. Plateau Meteor, 35(1):77-85. DOI:10.7522/j.issn. 1000.0534.2014.00136.<br/>徐安伦, 钟爱华, 孙绩华, 等, 2016.大理地区对流层至低平流层大气垂直结构的特征分析[J].高原气象, 35(1):77-85.
[24]Xu X D, Zhou M Y, Chen J Y, et al, 2001. A comprehensive physical pattern of land-air dynamic and thermal structure on the Qinghai-Xizang Plateau[J]. Sci China Earth Sci, 31(5):428-440. DOI:10.3321/j.issn:1006-9267.2001.05.011.<br/>徐祥德, 周明煜, 陈家宜, 等, 2001.青藏高原地-气过程动力、热力结构综合物理图象[J].中国科学:地球科学, 31(5):428-440.
[25]Ye D Z, Gao Y X, 1979. Tibetan Plateau Meteorology[M]. Beijing:Science Press, 7-9.<br/>叶笃正, 高由禧, 1979.青藏高原气象学[M].北京:科学出版社, 7-9.
[26]Ye D Z, Luo S W, Zhu B Z, 1957. The wind structure and heat balance in the lower troposphere over Tibetan Plateau and its surrounding[J]. Acta Meteor Sinica, 28(2):108-121. DOI:10.11676/qxxb1957.010.<br/>叶笃正, 罗四维, 朱抱真, 1957.西藏高原及其附近的流场结构和对流层大气的热量平衡[J].气象学报, 28(2):108-121.
[27]Yu J J, Liu Y M, Wu G X, 2011. An analysis of the diabatic heating characteristic of atmosphere over the Tibetan Plateau in winter Ⅰ:Climatology[J]. Acta Meteor Sinica, 69(1):79-88. DOI:10.11676/qxxb2011.007.<br/>宇婧婧, 刘屹岷, 吴国雄, 2011.冬季青藏高原大气热状况分析Ⅰ:气候平均[J].气象学报, 69(1):79-88.
[28]Yu J J, Liu Y M, Wu G X, 2011. An analysis of the diabatic heating characteristic of atmosphere over the Tibetan Plateau in winter Ⅱ:Interannual variation[J]. Acta Meteor Sinica, 69(1):89-98. DOI:10.11676/qxxb2011.008.<br/>宇婧婧, 刘屹岷, 吴国雄, 2011.冬季青藏高原大气热状况分析Ⅱ:年际变化[J].气象学报, 69(1):89-98.
[29]Zhang R H, Zhou S W, 2008. The air temperature change over the Tibetan Plateau during 19792002 and its possible linkage with ozone depletion[J]. Acta Meteor Sinica, 66(6):916-925. DOI:10.3321/j.issn:0577-6619.2008.06.007.<br/>张人禾, 周顺武, 2008.青藏高原气温变化趋势与同纬度带其他地区的差异以及臭氧的可能作用[J].气象学报, 66(6):916-925.
[30]Zhang X S, Yan X Q, Dong D H, et al, 2013. Study on the distribution characteristics of temperature and water vapor over Tibetan Plateau[C]//Proceedings of the thirtieth annual meeting of the Chinese Meteorological Society, 1-12.<br/>张兴山, 闫晓庆, 董东海, 等, 2013. 青藏高原上空温度场和水汽场的分布特征研究[C]//第30届中国气象学会年会论文集, 1-12.
[31]Zhou P P, Zhang M J, Wang S J, et al, 2017. Variation and its influences of 0℃ Insoterm Height in summer over high Asia[J]. Plateau Meteor, 36(2):371-383. DOI:10.7522/j.issn. 1000-0534.2016.00048.<br/>周盼盼, 张明军, 王圣杰, 等, 2017.高亚洲地区夏季0℃层高度变化及其影响特征研究[J].高原气象, 36(2):371-383.
[32]Zhu H, Wang X M, 2016. The discussion of physical processes affecting the lapse rate of air temperature change[J]. Adv Meteor Sci Technol, 6(5):51-54.<br/>朱禾, 王秀明, 2016.影响气温直减率变化的物理过程讨论[J].气象科技进展, 6(5):51-54.
[33]Zhu L H, Fan G Z, Hua W, 2015. Reversed phase change of the temperature in the upper and lower troposphere over the Tibetan Plateau in summer and its relationships to precipitation and atmospheric circulation under the background of global warming[J]. Chinese J Atmos Sci, 39(6):1250-1262. DOI:10.3878/j.issn. 1006-9895.1503.14249.<br/>朱丽华, 范广州, 华维, 2015.全球变暖背景下青藏高原夏季气温在对流层上下反相变化及其与降水和环流的关系[J].大气科学, 39(6):1250-1262.
文章导航

/