论文

多套土壤湿度替代资料在青藏高原的适用性分析

  • 王静 ,
  • 祁莉 ,
  • 吴志伟 ,
  • 施晓晖 ,
  • 何金海
展开
  • 南京信息工程大学气象灾害预报预警与评估协同创新中心, 江苏 南京 210044;复旦大学大气科学研究院, 上海 200433;中国气象科学研究院, 北京 100081

收稿日期: 2017-07-12

  网络出版日期: 2018-04-28

基金资助

国家自然科学基金项目(91337216,41275050,91437216,91337108,41575075);江苏高校优势学科建设工程资助项目(PAPD);长江学者和创新团队发展计划(PCSIRT);江苏省青蓝工程创新团队项目

Applicability Analysis of Soil Moisture from Multiple Substitute Data in Qinghai-Tibetan Plateau

  • WANG Jing ,
  • QI Li ,
  • WU Zhiwei ,
  • SHI Xiaohui ,
  • HE Jinhai
Expand
  • Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China;Fudan University, Shanghai 200433, China;Chinese Academy of Meteorological Sciences, Beijing 100081, China

Received date: 2017-07-12

  Online published: 2018-04-28

摘要

目前,仍没有一套公认的能够很好的描述高原土壤湿度变化特征的替代资料,为此利用收集到的多套观测资料作为参考,分别对各种替代资料在高原的适用性进行了评估。结果表明:(1)观测资料表明,高原的土壤湿度在表层、中层、深层的变化具有较好的一致性,表层与中层、中层与深层的土壤湿度相关系数均在0.8以上。(2)卫星反演资料SSM/I RETRIEVALS在各个站点与观测值的相关系数都为正,在高原东南部、中部、北部相关系数都在0.5以上,且标准差与高原东南和中部的观测标准差较为接近,适用于高原的大范围地区,是研究青藏高原土壤湿度多年变化特征的一套较好的替代资料。(3)春季高原土壤湿度的空间分布具有南部边缘较大、由东南向西北递减的特征,大部分地区的土壤湿度具有明显的线性增加趋势;去除趋势后,高原东、西各有一个均方差大值区,东、西关键区内的土壤湿度从春到夏都具有较好的持续性,可以作为预测我国夏季降水的重要因子。

本文引用格式

王静 , 祁莉 , 吴志伟 , 施晓晖 , 何金海 . 多套土壤湿度替代资料在青藏高原的适用性分析[J]. 高原气象, 2018 , 37(2) : 371 -381 . DOI: 10.7522/j.issn.1000-0534.2017.00074

Abstract

There is not any reliable long-time observed dataset to reflect the characteristics of soil moisture change, in this paper we comprehensively refer to several observation datasets, and assess the applicability of multiple substitute data to the Qinghai-Tibetan Plateau (QTP). The results show as following:(1) The observation dataset shows that the changes of the soil moisture in the surface, middle and deep layer have a good consistency, and the correlation coefficient between different layers are mostly above 0.8. (2) The SSM/I satellite retrieval dataset has a positive correlation with every site's observation data, as the correlation coefficients are all above 0.5 in the southeast, middle and north of QTP, and the standard deviations (SD) are both close to the observation SD in southeast and middle of QTP, so the SSM/I RETRIVALS should be a first-rate substitute data for studying the variation characteristics of soil moisture in QTP. (3) The spatial distribution of spring soil moisture in QTP is characterized by a large southern margin and a decline from southeast to northwest, and the general soil moisture of QTP has an obvious linearly increasing trend. After removing the linear trend, there are two large standard deviations areas in east and west QTP, and the soil moisture has great continuity from spring to summer in both areas which can be used to predict summer rainfall in China.

参考文献

[1]Bi H, Ma J, Zheng W, et al, 2016. Comparison of soil moisture in GLDAS model simulations and in situ observations over the Tibetan Plateau[J]. J Geophys Res, 121:2658-2678.
[2]Chow K C, Chan J C L, Shi X L, et al, 2008. Time-lagged effects of spring Tibetan Plateau soil moisture on the monsoon over China in early summer[J]. Int J Climatol, 28(1):55-67.
[3]Chen Y, Yang K, Qin J, et al, 2013. Evaluation of AMSR-E retrievals and GLDAS simulations against observations of a soil moisture network on the central Tibetan Plateau[J]. J Geophys Res, 118(10):4466-4475.
[4]Chahine M T, 1992. The hydrological cycle and its influence on climate[J]. Nature, 359(6394):373-380.
[5]Su Z, Rosnay P D, Wen J, et al, 2013. Evaluation of ECMWF's soil moisture analyses using observations on the Tibetan Plateau[J]. J Geophys Res, 118(11):5304-5318.
[6]Taylor K E, 2001. Summarizing multiple aspects of model performance in a single diagram[J]. J Geophys Res, 106(D7):7183-7192.
[7]Van der Velde R, Salama M S, Pellarin T, et al, 2014. Long term soil moisture mapping over the Tibetan Plateau using special sensor microwave[J]. Hydrology & Earth System Sciences Discussions, 10(5):6629-6667.
[8]Wang G, Hagan D F T, Lou D, et al, 2016. Evaluation of soil moisture derived from FY3B microwave brightness temperature over the Tibetan Plateau[J]. Remote Sens Lett, 7(9):817-826.
[9]Wu Z W, Zhang P, Chen H, et al, 2016. Can the Tibetan Plateau snow cover influence the interannual variations of Eurasian heat wave frequency?[J]. Climate Dyn, 46(11):3405-3417.
[10]Ding Y H, Ren G Y, Shi G Y, et al, 2006. National assessment report of climate change (Ⅰ):Climate change in China and its future trend[J]. Adv Climate Change Res, 2(1):3-8.<br/>丁一汇, 任国玉, 石广玉, 等, 2006.气候变化国家评估报告(Ⅰ):中国气候变化的历史和未来趋势[J].气候变化研究进展, 2(1):3-8.
[11]Guo W D, Ma Z G, Wang H J, 2007. Soil moisture——An important factor of seasonal precipitation prediction and its application[J]. Climatic Environ Res, 12(1):20-28.<br/>郭维栋, 马柱国, 王会军, 2007.土壤湿度——一个跨季度降水预测中的重要因子及其应用探讨[J].气候与环境研究, 12(1):20-28.
[12]Liu C, Yu Y, Xie J, et al, 2015. Applicability of soil temperature and moisture in several datasets over Qinghai-Xizang Plateau[J]. Plateau Meteor, 34(3):653-665. DOI:10.7552/j.issn. 1000-0534.2015.00034.<br/>刘川, 余晔, 解晋, 等, 2015.多套土壤温湿度资料在青藏高原的适用性[J].高原气象, 34(3):653-665.
[13]Liu Q, Du J Y, Shi J C, et al, 2013. Analysis of spatial distribution and multi-year trend of the remotely sensed soil moisture on the Tibetan Plateau[J]. Science China:Earth Sciences, 43(10):1677-1690.<br/>刘强, 杜今阳, 施建成, 等, 2013.青藏高原表层土壤湿度遥感反演及其空间分布和多年变化趋势分析[J].中国科学:地球科学, 43(10):1677-1690.
[14]Li D L, Zhong H L, Wu Q B, et al, 2005. Analyses on changes of surface temperature over Qinghai-Xizang Plateau[J]. Plateau Meteor, 24(3):285-299.<br/>李栋梁, 钟海玲, 吴青柏, 等, 2005.青藏高原地表温度的变化分析[J].高原气象, 24(3):285-299.
[15]Li D X, Wang C H, 2016. The relation between soil moisture over the Tibetan Plateau in spring and summer precipitation in the eastern China[J]. Journal of Glaciology and Geocryology, 38(1):89-99.<br/>李登宣, 王澄海, 2016.青藏高原春季土壤湿度与中国东部夏季降水之间的关系[J].冰川冻土, 38(1):89-99.
[16]Ma Z G, Fu C B, Xie L, et al, 2001. Some problems in the study on the relationship between soil moisture and climatic change[J]. Adv Earth Sci, 16(4):563-568.<br/>马柱国, 符淙斌, 谢力, 等, 2001.土壤湿度和气候变化关系研究中的某些问题[J].地球科学进展, 16(4):563-568.
[17]Ma S Y, Zhu K Y, Li M X, et al, 2016. A comparative study of multi-source soil moisture data for China's regions[J]. Climatic Environ Res, 21 (2):121-133.<br/>马思源, 朱克云, 李明星, 等, 2016.中国区域多源土壤湿度数据的比较研究[J].气候与环境研究, 21(2):121-133.
[18]Shi L, Du J, Zhou K S, et al, 2016. The temporal-spatial variations of soil moisture over the Tibetan Plateau during 1980-2012[J]. Journal of Glaciology and Geocryology, 38(5):1241-1248.<br/>石磊, 杜军, 周刊社, 等, 2016.1980-2012年青藏高原土壤湿度时空演变特征[J].冰川冻土, 38(5):1241-1248.
[19]Shen D, Wang L, 2015. A sensitivity test of effect of Tibet Plateau soil moisture on summer precipitation and temperature over China[J]. Meteor Sci Technol, 43(6):1095-1103.<br/>沈丹, 王磊, 2015.青藏高原土壤湿度对中国夏季降水与气温影响的敏感试验[J].气象科技, 43(6):1095-1103.
[20]Shen R P, Zhang Y, Shi C X, et al, 2016. Inter-comparison of various long-time soil moisture datasets in China[J]. Meteor Sci Technol, 44(6):867-874.<br/>沈润平, 张悦, 师春香, 等, 2016.长时间序列多源土壤湿度产品在中国地区的比较分析[J].气象科技, 44(6):867-874.
[21]Wang R, Li W P, Liu X, et al, 2009. Simulation of the impacts of spring soil moisture over the Tibetan Plateau on Summer precipitation in China[J]. Plateau Meteor, 28(6):1233-1241.<br/>王瑞, 李伟平, 刘新, 等, 2009.青藏高原春季土壤湿度异常对我国夏季降水影响的模拟研究[J].高原气象, 28(6):1233-1241.
[22]Wang J, Qi L, He J H, et al, 2016. Relationship between spring soil moisture in the Tibetan Plateau and summer precipitation in the Yangtze river basin and its possible mechanism[J]. Chinese J Geophys, 59(11):3985-3995.<br/>王静, 祁莉, 何金海, 等, 2016.青藏高原春季土壤湿度与我国长江流域夏季降水的联系及其可能机理[J].地球物理学报, 59(11):3985-3995.
[23]Xu X D, 2015. Exploring the effect of Tibetan Plateau and its dynamical mechanisms[M]. Beijing:China Meteorological Press.<br/>徐祥德, 2015.青藏高原影响与动力学机制探讨[M].北京:气象出版社.
[24]Xi J J, Wen J, Tian H, et al, 2014. Applicability evaluation of AMSR-E remote sensing soil moisture products in Qinghai-Tibet plateau[J]. Transactions of the Chinese Society of Agricultural Engineering, 30(13):194-202.<br/>席家驹, 文军, 田辉, 等, 2014. AMSR-E遥感土壤湿度产品在青藏高原地区的适用性[J].农业工程学报, 30(13):194-202.
[25]Zhang Y C, Qian Y F, 1999. Numerical studies on the effects of the critical height of Qinghai-Xizang Plateau uplift on the atmosphere[J]. Acta Meteor Sinica, 57(2):157-167.<br/>张耀存, 钱永甫, 1999.青藏高原隆升作用于大气临界高度的数值研究[J].气象学报, 57(2):157-167.
[26]Zhang W G, Li S X, Pang Q Q, 2008. Variation characteristics of soil temperature over Qinghai-Xizang Plateau in the past 45 years[J]. Acta Geographica Sinica, 63(11):1151-1159.<br/>张文纲, 李述训, 庞强强, 2008.近45年青藏高原土壤温度的变化特征分析[J].地理学报, 63(11):1151-1159.
[27]Zhang R H, Liu L, Zuo Z Y, 2016. Variations of soil moisture over China and their influences on Chinese climate[J]. Chinese J Nature, 38(5):313-319.<br/>张人禾, 刘栗, 左志燕, 2016.中国土壤湿度的变异及其对中国气候的影响[J].自然杂志, 38(5):313-319.
[28]Zhuo G, Deji Z M, Nima J, 2017. Distribution of soil moisture over the Qinghai-Tibetan Plateau and its effect on the precipitation in June and July over the mid-lower reaches of Yangtze River Basin[J]. Plateau Meteor, 36(3):657-666. DOI:10.7522/j.issn. 1000-0534.2016.00073.<br/>卓嘎, 德吉卓玛, 尼玛吉, 2017.青藏高原土壤湿度分布特征及其对长江中下游6、7月降水的影响[J].高原气象, 36(3):657-666.
[29]Zhang C C, Li D L, Wang H, et al, 2017. Characteristics of the surface sensible heat on the Qinghai-Xizang Plateau in the spring and its influences on the summertime rainfall pattern over the Eastern China[J]. Plateau Meteor, 36(1):13-23. DOI:10.7522/j.issn. 1000-0534.2016.00028.<br/>张长灿, 李栋梁, 王慧, 等, 2017.青藏高原春季地表感热特征及其对中国东部夏季雨型的影响[J].高原气象, 36(1):13-23.
文章导航

/