Using NCEP/NCAR 1°×1° FNL datasets, the CMA surface precipitation data and Qinghai-Tibetan Plateau and shear line year books, the dimensional structure characteristics and their causes of the plateau shear line S1019 were diagnosed which occurred on July 16-17, 2010. The results show, in its generative development period, there exist strong divergence area near the South Asia high ridge, and low level relative vorticity has developed rapidly in the aspect of scope and intensity. Overall, it shows a baroclinic vertical structural configuration. It appears a "warm and wet core" structure near the height of 300 hPa, the apparent heat source Q1 and apparent moisture sink Q2 both strengthening in the vertical direction, the Q1 maximum value center lifted from 400 hPa up to 300 hPa while the positive extreme value of Q2 decreased from 300 hPa to 600 hPa. In the decaying period, the divergence area decreased significantly near the top of 100 hPa along South Asia high ridge, it mainly appears wet and cold in the upper troposphere, the low level relative vorticity value decreases in the scope and intensity, the southwest vortex gradually moves out of the Qinghai-Tibetan Plateau area, the lower level completely controlled by the cold and wet air. When the precipitation tends to end, both the apparent heat source Q1 and apparent moisture sink Q2 reduce quickly.
[1]Takahashi H, 2003. Observational study on the initial formation process of the Mei-yu frontal disturbance in the eastern foot of the Tibetan Plateau in middle-late June 1992[J]. J Meteor Soc Japan, 81(6):1303-1327.
[2]Li Y D, Wang Y, 2008. Characteristics of summer convective systems initiated over the Tibetan Plateau. Part Ⅰ:Origin, track, development, and precipitation[J]. J Appl Meteorol Clim. 47(10):2679-2694.
[3]Wang W, Kuo Y H, Warner T T, 1993. A diabatically driven mesoscale vortex in the lee of the Tibetan Plateau[J]. Mon Wea Rev, 121(9):2542-2561.
[4]Yanai M, Esbensen S, Chu J H, 1973. Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets[J]. J Atmos Sci, 30(4):611-627.
[5]Zhang X, Yao X P, Ma J L, et al, 2016. Climatology of transverse shear lines and relationship with heavy rainfalls over the Tibetan Plateau during boreal summer[J]. J Meteor Res, 30(6):915-926.
[6]The analysis of satallite cloud chart for medium precipitation of shear line cloud system over the Tibetan Plateau[J]. Journal of Chengdu Institute of Meteorology, 15(4):15-19.<br/>鲍玉章, 1990.西藏高原切变线云系中雨以上降水的卫星云图分析[J].成都气象学院学报, 15(4):15-19. Bao Y Z, 1990.
[7]He G B, Gao W L, Tu N N, 2009. The observational analysis of shear line and low vortex over the Tibetan Plateau in summer from 2000 to 2007[J]. Plateau Meteor, 28(3):549-555.<br/>何光碧, 高文良, 屠妮妮, 2009.2000-2007年夏季青藏高原低涡切变线观测事实分析[J].高原气象, 28(3):549-555.
[8]He G B, Shi R, 2011. Studies on dynamic and thermal characteristics of different shear lines over Tibetan Plateau in summer[J]. Plateau Meteor, 30(3):568-575.<br/>何光碧, 师锐, 2011.夏季青藏高原不同类型切变线的动力、热力特征分析[J].高原气象, 30(3):568-575.
[9]He G B, 2013. Review of the Plateau shear-line studies[J]. Plateau Mountain Meteor Res, 33(1):90-96.<br/>何光碧, 2013.高原切变线研究回顾[J].高原山地气象研究, 33(1):90-96.
[10]Li G P, 2002. The dynamic meteorology study of Tibetan Plateau[M]. Beijing:China Meteorological Press, 27.<br/>李国平, 2002.青藏高原动力气象学[M].北京:气象出版社, 27.
[11]Li S S, Li G P, 2017. Diagnostic analysis based on wet <i>Q</i>-vector of a shear line with rain on the east side of Qinghai-Tibetan Plateau under the saddle pattern circulation background field[J]. Plateau Meteor, 36(2):317-329. DOI:10.7522/j. issn. 1000-0534.2016.00025.<br/>李山山, 李国平, 2017.一次鞍型场环流背景下高原东部切变线降水的湿<i>Q</i>矢量诊断分析[J].高原气象, 36(2):317-329.
[12]Li Y L, 1978. The satellite charts analysis on plateau weather[J]. Meteor Mon, 4(4):10-12.<br/>李玉兰, 1978.高原天气的云图分析[J].气象, 4(4):10-12.
[13]Luo S W, 1963. Formation analysis of shear line over the eastern Plateau in winter[J]. J Meteor Res, 33(3):305-319.<br/>罗四维, 1963.冬季我国高原东侧切变形成的分析[J].气象学报, 33(3):305-319.
[14]The Tibet Plateau Science Research Group, 1981. Study on 500 hPa low vortex shear line of Tibet Plateau[M]. Beijing:Science Press, 100-122.<br/>青藏高原气象科学研究拉萨会战组, 1981.夏半年青藏高原500 hPa低涡切变线的研究[M].北京:科学出版社, 100-122.
[15]Xu G C, 1984. The climatologically synoptic characteristics of the shear line on the 500mb surface over the Qinghai-Xizang Plateau[J]. Plateau Meteor, 3(1):36-41.<br/>徐国昌, 1984.500毫巴高原切变线的天气气候特征[J].高原气象, 3(1):36-41.
[16]Yao X P, Sun J Y, Kang L, et al, 2014. Advances on research of shear convergence line over Qinghai-Xizang Plateau[J]. Plateau Meteor, 33(1):294-300. DOI:10.7522/j. issn. 1000-0534.2013.00164.<br/>姚秀萍, 孙建元, 康岚, 等, 2014.高原切变线研究的若干进展[J].高原气象, 33(1):294-300.
[17]Yao X P, Sun J Y, Ma J L, 2017. Advances on research of Yangtze-Huaihe shear line[J]. Plateau Meteor, 36(4):1138-1151. DOI:10.7522/j. issn. 1000-0534.2017.00015.<br/>姚秀萍, 孙建元, 马嘉理, 2017.江淮切变线研究的回顾与展望[J].高原气象, 36(4):1138-1151.
[18]Ye D Z, Gao Y X, Chen Q, 1977. On some features of the summer atmospheric circulation over the Tsinghai-Tibetan plateau and its neighborhood[J]. Chinese J Atmos Sci, 1(4):289-299.<br/>叶笃正, 高由禧, 陈乾, 1977.青藏高原及其紧邻地区夏季环流的若干特征[J].大气科学, 1(4):289-299.
[19]Yu S H, 1994. A <i>Q</i>-vector analysis of the process of shear line on Qinghai-Xizang Plateau triggered form moving trough aloft[J]. J Appl Meteor Sci, 5(1):109-113.<br/>郁淑华, 1994.一次高空槽在青藏高原上诱发切变线的<i>Q</i>矢量分析[J].应用气象学报, 5(1):109-113.
[20]Yu S H, Luo H, 1993. The contrast analysis of kinetic energy budget for developing trough and shear line over the Qinghai-Xizang Plateau[J]. Plateau Meteor, 12(3):251-256.<br/>郁淑华, 骆红, 1993.青藏高原上低槽与切变线动能收支的个例分析[J].高原气象, 12(3):251-256.
[21]彭广, 李跃清, 郁淑华, 等, 2011.青藏高原低涡切变线年鉴-2010[M].北京:科学出版社, 1-244.
[22]Peng G, Li Y Q, Yu S H, et al, 2010. Tibetan Plateau Vortex and shear line yearbook-2010[M]. Beijing:China Science Press, 1-244.
[23]Zhun Q G, Lin J R, Shou S W, et al, 2000. Principle of synoptic meteorology[M]. Beijing:Meteorological Press, 368-370.<br/>朱乾根, 林锦瑞, 寿绍文, 等, 2000.天气学原理与方法[M].北京:气象出版社, 368-370.