论文

青藏高原地面加热场年际变化特征及其与西风急流关系研究

  • 樊威伟 ,
  • 马伟强 ,
  • 郑艳 ,
  • 杨智敏
展开
  • 兰州大学大气科学学院, 甘肃 兰州 730000;中国科学院青藏高原研究所, 北京 100101;中国科学院青藏高原地球科学卓越创新中心, 北京 100101;南京信息工程大学大气科学学院, 江苏 南京 210000

收稿日期: 2017-04-11

  网络出版日期: 2018-06-28

基金资助

国家自然科学基金项目(41661144043,91637313,91737205,41522501);中国科学院“百人计划”项目(马伟强);中国科学院前沿科学重点研究项目(QYZDJ-SSW-DQC019);中国科学院大学生“科创计划”项目

Long-Term Variation of Surface Heating over the Qinghai-Tibetan Plateau Linked to the Westerly Jet

  • FAN Weiwei ,
  • MA Weiqiang ,
  • ZHENG Yan ,
  • YANG Zhimin
Expand
  • College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, Gansu, China;Institute of Tibetan Plateau, Chinese Academy of Sciences, Beijing 100101, China;Chinese Academy of Sciences Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China;Nanjing University of Information Science and Technology, Nanjing 210000, Jiangsu, China

Received date: 2017-04-11

  Online published: 2018-06-28

摘要

利用ERA-Interim地表热通量再分析资料(包含感热通量及潜热通量数据)分析了1979年3月至2009年2月青藏高原地区(下称高原)地面加热场的时空分布特征及其年际变化趋势。突出青藏高原地面加热场与西风急流的联系,分别探讨了青藏高原春季感热及潜热变化的可能影响机制。结果表明:(1)高原感热空间分布大体呈现为自西北向东南递减的特征,潜热与感热呈反相的空间格局,自西北向东南逐渐增强。(2)相比于夏、秋、冬三季,春季高原地表热通量年际变化特征较为突出,其中感热通量显著减少,潜热通量显著增加[分别为-1.83和0.79 W·m-2·(10a)-1],该趋势和全年平均热通量年际变化情况一致。(3)就年际变化而言,春季感热通量与潜热通量之间存在明显的负相关(相关系数为-0.69),表明可能存在某一气候因子使得春季感热减弱而使潜热增强。进一步分析发现,高原地面加热场与西风急流存在密切的联系,春季西风急流的减弱在影响高原感热强度的同时,对高原潜热也具有较大影响。其可能影响机制如下:受高原上空西风急流减弱的影响,高原地表风速减弱从而导致感热通量显著减少;春季西风急流的减弱导致印缅槽的增强,在孟加拉湾上空形成一异常气旋环流,使该地区对流增强、水汽上升异常,同时气旋中北向暖湿气流将水汽携带至高原南侧,并通过影响高原降水量改变其潜热通量。

本文引用格式

樊威伟 , 马伟强 , 郑艳 , 杨智敏 . 青藏高原地面加热场年际变化特征及其与西风急流关系研究[J]. 高原气象, 2018 , 37(3) : 591 -601 . DOI: 10.7522/j.issn.1000-0534.2017.00062

Abstract

Based on a 30-yr set of daily surface heat flux data for 1979-2008 over the Qinghai-Tibetan Plateau (QTP) from ERA-interim, the spatial distribution and long-term trends of sensible and latent heat flux over the QTP were analyzed respectively. The factors responsible for the trends of sensible heat flux and latent heat flux in spring were investigated in this paper and we discussed the relationship between the surface heating and the westerly jet over the QTP emphases. Significant differences in spatial pattern and variability between sensible heat flux and latent heat flux were observed. The spatial distributions of seasonal-mean surface heating show that sensible heat flux increases from the southeast to the northwest over the QTP in seasons except spring, while latent heat flux increases from the northwest to the southeast of QTP throughout the four seasons. The decreasing of sensible heat flux and the increasing of latent heat flux occur in almost the QTP in the four seasons during the study time. Long-term variation of surface heating over the QTP in spring is more remarkable than the other three seasons. The maximum increasing rate of latent heat flux[0.79 W·m-2·(10a)-1] and the maximum decreasing rate of sensible heat flux[-1.83 W·m-2·(10a)-1] appeare both in spring. In terms of the inter-annual variation of surface heating over the QTP, there is a significant negative correlation (R=-0.69) between latent heat flux and sensible heat flux, which indicates that the changes of latent heat flux and sensible heat flux may be affected by the same climatic factor. Further analysis suggested that there is a close relationship between the surface heating field and the westerly jet over the QTP. The weakening trend of the westerly jet over the QTP has an important impact on the change of sensible heat flux as well as latent heat flux. The possible effect mechanisms are as follows:The weakened of the westerly jet leads to a declining trend in the surface wind speed over the QTP, furthermore, contributes to the decrease of sensible heat flux. Besides, accompanied by the change of westerly jet, the India-Burma trough gets stronger leading to an anomalous cyclonic circulation over the Bay of Bengal. Due to the stronger convection, more water vapor content is found in the region, and also more moisture carried by the anomalous southeast flow forming in the cyclonic to the QTP. Accordingly, the stronger precipitation is found over the QTP in spring. As a result, the latent heat flux over the QTP presents an increasing trend during three recent decades.

参考文献

[1]Avissar R, Schmidt T, 1998.An evaluation of the scale at which ground-surface heat flux patchiness affects the convective boundary layer using large-eddy simulations[J].J Atmos Sci, 55(16):2666-2689.
[2]Chen S, Huang J, Zhao C, et al, 2013.Modeling the transport and radiative forcing of Taklimakan dust over the Tibetan Plateau:A case study in the summer of 2006[J].J Geophys Res, 118(2):797-812.
[3]Diaz H F, Bradley R S, 1997. Temperature variations during the last century at high elevation sites[M]. Climatic change at high elevation sites. Springer Netherlands.
[4]Duan A, Wu G X, 2005.Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia[J].Climate Dyn, 24(7/8):793-807.
[5]Duan A, Wu G, 2008.Weakening trend in the atmospheric heat source over the Tibetan Plateau during recent decades.Part Ⅰ:Observations[J].J Climate, 21(13):3149-3164.
[6]Duan A, Wu G, 2009.Weakening trend in the atmospheric heat source over the Tibetan Plateau during recent decades.Part Ⅱ:connection with climate warming[J].J Climate, 22(15):4197-4212.
[7]Li G P, Duan T Y, Wan J, et al, 1996.Determination of the drag coefficient over the Tibetan Plateau[J].Adv Atmos Sci, 13(4):511-518.
[8]Hu Z Y, Cheng G D, Qian Z Y, et al, 2004.Cooling effect of ballast revetment on the roadbed of Qinghai-Tibetan Railway[J].Sci China (Earth Sci), 47(S1):161-167.
[9]Huang F F, Ma W Q, Wang B B, et al, 2017.Air Temperature Estimation with MODIS Data over the Northern Tibetan Plateau[J].Adv Atmos Sci, 34(5):650-662.
[10]Lau K M, Kim M K, Kim K M, 2006.Asian summer monsoon anomalies induced by aerosol direct forcing:the role of the Tibetan Plateau[J].Climate dynamics, 26(7/8):855-864.
[11]Li X Z, Zhou W, 2016.Modulation of the interannual variation of the india-burma trough on the winter moisture supply over southwest china[J].Climate Dyn, 46(1/2), 147-158.
[12]Liu X D, Chen B D, 2000.Climatic warming in the Tibetan plateau during recent decades[J].Int J Climatol, 20(14):1729-1742.
[13]Ma W Q, Ma Y M, 2016.Modeling the influence of land surface flux on the regional climate of the Tibetan Plateau[J].Theor Appl Climatol, 125(1):45-52.
[14]Ma W Q, Ma Y M, Ishikawa H, 2014.Evaluation of the SEBS for upscaling the evapotranspiration based on in-situ observations over the Tibetan Plateau[J].Atmos Res, 138(3):91-97.
[15]Ma W Q, Ma Y M, Li M S, et al, 2009.Estimating surface fluxes over the north Tibetan Plateau area with ASTER imagery[J].Hydrol Earth Syst Sci, 13(1):57-67.
[16]Ma W Q, Ma Y M, Su B, 2011.Feasibility of retrieving land surface heat fluxes from ASTER data using SEBS:A case study from the NamCo area of the Tibetan Plateau[J].Arctic Antarctic & Alpine Research, 43(2):239-245.
[17]Ma Y M, Ma W Q, Zhong L, et al, 2017.Monitoring and modeling the Tibetan Plateau's climate system and its impact on East Asia[J].Scientific Reports, 7:44574.
[18]Ma Y M, Zhong L, Tian H, et al, 2006.Study on the regional land surface heat fluxes over heterogeneous landscape of the Tibetan Plateau area[J].J Remote Sens, 10(4):542-547.
[19]Rangwala I, Miller J R, Russell G L, et al, 2010.Using a global climate model to evaluate the influences of water vapor, snow cover and atmospheric aerosol on warming in the Tibetan Plateau during the twenty-first century[J].Climate Dyn, 34(6):859-872.
[20]Rangwala I, Miller J R, Ming X, 2009.Warming in the tibetan plateau:possible influences of the changes in surface water vapor[J].Geophys Res Lett, 36(6), 295-311.
[21]Schneider U, Fuchs T, Meyer-Christoffer A, et al, 2008. Global precipitation analysis products of the GPCC[R/OL]. Global Precipitation Climatology Centre (GPCC), DWD, Internet Publikation, 112. <a href="http://www.mapcruzin.com/environmental-shapefile-aps/water/precipitation/GPCC_intro_products_2008.pdf" target=_blank>http://www.mapcruzin.com/environmental-shapefile-aps/water/precipitation/GPCC_intro_products_2008.pdf</a>. [2017-04-08].
[22]Shi Q, Liang S, 2014.Surface-sensible and latent heat fluxes over the Tibetan Plateau from ground measurements, reanalysis, and satellite data[J].Atmos Chem Phys, 14(11):5659-5677.
[23]Simmons A, Uppala S, Dee D, et al, 2007.ERA-Interim:New ECMWF reanalysis products from 1989 onwards[J].ECMWF Newsletter, 110:25-35.
[24]Sun G H, Hu Z Y, Sun F L, et al, 2017.An analysis on the influence of spatial scales on sensible heat fluxes in the north Tibetan Plateau based on Eddy covariance and large aperture scintillometer data[J].Theor Appl Climatol, 129(3/4):965-976.
[25]Wu G, Yao T, Xu B, et al, 2010.Dust concentration and flux in ice cores from the Tibetan Plateau over the past few decades[J].Tellus B, 62(3):197-206.
[26]Wu T W, Qian Z A, 2003.The relation between the Tibetan winter snow and the Asian summer monsoon and rainfall:An observational investigation[J].J Climate, 16(12):2038-2051.
[27]Yanai M, Li C, Song Z, 1992.Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon[J].J Meteor Soc Japan, 70(1B):319-351.
[28]Yang K, Guo X F, Wu B Y, 2011.Recent trends in surface sensible heat flux on the Tibetan Plateau[J].Sci China(Earth Sci), 54(1):19-28.
[29]Jin R, Qi L, He J H, 2016.Effect of oceans to spring surface sensible heat flux over Tibetan Plateau and its influence to East China preciptation[J].Acta Oceanologica Sinica, 38(5):83-95.<br/>金蕊, 祁莉, 何金海, 2016.春季青藏高原感热通量对不同海区海温强迫的响应及其对我国东部降水的影响[J].海洋学报, 38(5):83-95.
[30]Li D L, He J H, Tang X, et al, 2007.The relationship between the intensity of surface heating fields over the Qinghai-Xizang Plateau and ENSO cycle[J].Plateau Meteor, 26(9):36-45.<br/>李栋梁, 何金海, 汤绪, 等, 2007.青藏高原地面加热场强度与ENSO循环的关系[J].高原气象, 26(1):39-46.
[31]Liu C, Liu Y M, Liu B Q, 2015.Comparison of six sensible heat flux datasets over the Iranian-Tibetan Plateaus[J].J Meteor Sci, 35(4):398-404.<br/>刘超, 刘屹岷, 刘伯奇, 2015.6种地表热通量资料在伊朗-青藏高原地区的对比分析[J].气象科学, 35(4):398-404.
[32]Wang M R, Zhou S W, Duan A M, 2012.Trend in the atmospheric heat source over the central and eastern Tibetan Plateau during recent decades:Comparison of observations and reanalysis data[J].Chinese Sci Bull, 57(Suppl):548-557.<br/>王美蓉, 周顺武, 段安民, 2012.近30年青藏高原中东部大气热源变化趋势:观测与再分析资料对比[J].科学通报, 57(增刊), 178-188.
[33]Wu G X, Liu Y M, Liu X, et al, 2005.How the heating over the Tibetan Plateau affects the Asian climate in summer[J].Chinese J Atmos Sci, 29(1):47-56.<br/>吴国雄, 刘屹岷, 刘新, 等, 2005.青藏高原加热如何影响亚洲夏季的气候格局[J].大气科学, 29(1):47-56.
[34]Ye D Z, Zhang J Q, 1974.A preliminary experimental simulation the heating effect of the Tibetan Plateau on the general circulation over Eastern Asia in summer[J].Sci China (Earth Sci), 25(3):397-420.<br/>叶笃正, 张捷迁, 1974.青藏高原加热作用对夏季东亚大气环流影响的初步模拟实验[J].中国科学(地球科学), 25(3):91-110.
[35]Yu L L, Chen H S, 2012.Possible linkages among anomalous land surface condition surface heating in Qinghai-Xizang Plateau in April and summer precipitation in China[J].Plateau Meteor, 31(5):1173-1182.<br/>于琳琳, 陈海山, 2012.青藏高原4月陆面状况和地表加热异常与中国夏季降水的联系[J].高原气象, 31(5):1173-1182.
[36]Zhang H X, Li W J, Li W P, 2017.Spatial and temporal distribution characteristics of surface heat fluxes over both Tibetan Plateau and Iranian Plateau in boreal spring and summer and their relationships[J].Acta Meteor Sinica, 75(2):260-274.<br/>张浩鑫, 李维京, 李伟平, 2017.春夏季青藏高原与伊朗高原地表热通量的时空分布特征及相互联系[J].气象学报, 75(2):260-274.
文章导航

/