论文

一次六盘山两侧强对流暴雨中尺度对流系统的传播特征

  • 赵庆云 ,
  • 张武 ,
  • 陈晓燕 ,
  • 苟尚
展开
  • 半干旱气候变化教育部重点实验室, 兰州大学大气科学学院, 甘肃 兰州 730000;兰州中心气象台, 甘肃 兰州 730020

收稿日期: 2017-06-24

  网络出版日期: 2018-06-28

基金资助

国家重点研发计划项目(2016YFC0401003);国家自然科学基金委员会创新研究群体项目(41521004);中国气象局预报员专项(CMAYBY2018-077)

Propagation Characteristics of Mesoscale Convection System in an Event of Severe Convection Rainstorm over Both Sides of Liupanshan Mountains

  • ZHAO Qingyun ,
  • ZHANG Wu ,
  • CHEN Xiaoyan ,
  • GOU Shang
Expand
  • Ministry of Education Key Laboratory for Semi-Arid Climate Change, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, Gansu, China;Lanzhou Center Meteorological Observatory, Lanzhou 730020, Gansu, China

Received date: 2017-06-24

  Online published: 2018-06-28

摘要

2016年8月24日19:00至25日08:00(北京时)在500 hPa副热带高压控制下,甘肃中东部、陕西关中出现强对流暴雨,19个乡镇出现大暴雨,最大降水量达158.7 mm,小时最大降水量达79.1 mm,且伴随雷电天气,呈现典型的强对流天气特征。利用卫星、雷达、地面加密资料、ECMWF细网格资料、NCEP再分析资料和常规观测资料,重点分析造成短时强降水的中尺度系统的发生、发展以及中尺度对流系统传播特征。结果表明,大暴雨主要由2个中尺度对流系统产生;中尺度对流系统的发生、发展与中尺度地面辐合线有密切关系;低层动力场的切变扰动在六盘山两侧形成东西向的辐合线,雷暴单体在辐合线附近强烈发展,整体随辐合线向偏南方向移动;六盘山以西的辐合线影响甘肃中部,六盘山东侧的辐合线在移动中分裂为两段:东段继续向偏南方向移动,影响甘肃陇东;西段移到关中西部时,沿峡谷进入关中西部的偏北风,受地形影响转为西北风,使辐合线由东西向转为南北向,雷暴单体随辐合线沿地形走向自西向东移动,影响关中;有利的动力、热力因素,对六盘山东侧中尺度对流系统的加强和传播方向的改变起到重要作用。

本文引用格式

赵庆云 , 张武 , 陈晓燕 , 苟尚 . 一次六盘山两侧强对流暴雨中尺度对流系统的传播特征[J]. 高原气象, 2018 , 37(3) : 767 -776 . DOI: 10.7522/j.issn.1000-0534.2017.00068

Abstract

Constrained by the subtropical anticyclone at 500 hPa, a severe convection rainstorm process was taking place in the region of middle-east part of Gansu province and the Central Shaanxi Plain from 19:00 Aug 24 to 08:00(Beijing Time) Aug 25, 2016. Arising rainstorm in 19 counties, with the maximum amount of daily precipitation of 158.7 mm and the highest 79.1 mm per hour, accompanied with lightning. It presented the features of a typical severe convection weather. Based on the data of satellite, radar, high resolution ground-base observations, ECMWF, NCEP and routine measurements, the occurrence and development of the mesoscale system, which was the main cause inducing the short time heavy precipitation, were analyzed, as well as the propagation characteristics of Mesoscale Convection System (MCS). The results show that there were two MCSs which were the main causes of the rainstorm. The occurrence and development of the MCS was close linked to the Convergence Line (CL) near the surface. The transmeridional CLs were taken shape near both westside and eastside of Liupanshan mountains due to the Shearing Disturbance(SD) in dynamical fields at low level, the Thunderstorm Cell (TC) was developing intensively near to the CL and moving southward with it overall. The westside CL had impact on the central part of Gansu. The eastside CL split in two parts, east section and west section. The first one moved continuously to southward affecting Longdong of Gansu, the second one changed into the north-south trending CL due to the complicated topography, while prevail north airflow turned to northwest in the west of the Central Shaanxi Plain. The TC moved from west to east along the terrain with the CL. Appropriate dynamical and thermal factors played an important role in the process of the enhancement of MCS and change of propagation direction over the east side of Liupanshan Mountains.

参考文献

[1]Doswell C AⅢ, Brooks H E, Maddox R A, 1996.Flash flood forecasting:An ingredients-based methodology[J].Wea Forecasting, 11:560-581.
[2]Doswell C A, 1987.The distinction between large-scale and mesoscale contribution to severe convection:A case study example[J].Wea Forecastion, 2(1):3-16.
[3]Wilson J W, Roberts R D, 2006.Summary of convective storm initiation and evolution during IHOP:Observational and modeling perspective[J].Mon Wea Rev, 134(1):23-47.
[4]Xue M, Marin W J, 2006b.A high-resolution modeling study of the 24 May 2002 case during IHOP.Part 2:Horizontal convective rolls and convective initiation[J].Mon Wea Rev, 134(1):172-191.
[5]Chen M X, Wang Y C, Xiao X, et al, 2013.Initiation and propagation mechanism for the Beijing extreme heavy rainstorm clusters on 21 July 2012[J].Acta Meteor Sinica, 71(4):569-592.DOI:10.11676/qxxb2013.053.DOI:10.11676/qxxb2013.050.<br/>陈明轩, 王迎春, 肖现, 等, 2013.北京"7.21"暴雨雨团的发生和传播机理[J].气象学报, 71(4):569-591.
[6]Chen M X, Xiao X, Gao F, et al, 2016.A case study and batch verification on high resolution numerical simulations of severe convective events using an analysis system based on rapid-refresh 4-D variational radar data assimilation[J].Acta Meteor Sinica, 74(3):421-441.DOI:10.11676/qxxb2016.031.<br/>陈明轩, 肖现, 高峰, 等, 2016.基于雷达四维变分分析系统的强对流高分辨率模拟个例分析和批量检验[J].气象学报, 74(3):421-441.
[7]Chen Y, Sun J, Xu J, et al, 2012.Analysis and thinking on the extremes of the 21 July 2012 torrential rain in Beijing Part 1:Observation and Thinking[J].Meteor Mon, 38(10):1255-1266.<br/>谌芸, 孙军, 徐臖, 等, 2012.北京721特大暴雨极端性分析及思考(一)观测分析及思考[J].气象, 38(10):1255-1266.
[8]Fang C, Mao D Y, Zhang X W, et al, 22012.Analysis on the mesoscale convective conditions and characteristics of an extreme torrential rain in Beijing on 21 July 2012[J].Meteor Mon, 38(10):1278-1287.<br/>方翀, 毛冬艳, 张小雯, 等, 2012.2012年7月21日北京地区特大暴雨中尺度对流条件和特征初步分析[J].气象, 38(10):1278-1287.
[9]慕建利, 李泽椿, 谌云, 等, 2014.一次陕西关中强暴雨中尺度系统特征分析[J].高原气象, 33(1):148-161.
[10]Mu J L, Li Z C, Chen Y, et al, Feature analyses of mesoscale convective system of a heavy rainfall in the central Shaanxi Plain[J].Plateau Meteor, 33(1):148-161.DOI:10.7522/j.issn.1000-0534.2013.00049.
[11]Qi L B, Chen C H, Liu Q J, 2006.Application of narrow-band echo in severe weather prediction and analysis[J].Acta Meteor Sinica[J], 64(1):112-120.<br/>漆梁波, 陈春红, 刘强军, 2006.弱窄带回波在分析和预报强对流天气中的应用[J].气象学报, 64(1):112-120.
[12]Sun J S, He N, Wang G R, et al, 2012.Preliminary analysis on synoptic configuration evolvement and mechanism of a torential rain occurring in Beijing on 21 July 2012[J].Torrential Rain Disaster, 31(3):218-225.<br/>孙继松, 何娜, 王国荣, 等, 2012."7.21"北京大暴雨系统的结构演变特征及成因初探[J].暴雨灾害, 31(3):218-22.
[13]Sun J S, Lei L, Yu B, et al, 2015.The fundamental features of the extreme severe rain events in the recent 10 years in the Beijing Area[J].Acta Meteor Sinica, 73(4):609-623.DOI:10.11676/qxxb2015.044.<br/>孙继松, 雷蕾, 于波, 等, 2015.近10年北京地区极端暴雨事件的基本特征[J].气象学报, 73(4):609-623.
[14]Sun J, Chen Y, Yang S N, et al, 2012.Analysis and thinking on the extremes of the 21 July 2012 torrential rain in Beijing Part 2:Preliminary causation analysis and thinking[J].Meteor Mon, 38(10):1267-1277.<br/>孙军, 谌芸, 杨舒楠, 等, 2012.北京721特大暴雨极端性分析及思考(二)极端性降水成因初探及思考[J].气象, 38(10):1267-1277.
[15]Wang Y, Yu L L, Li Y W, et al, 2011.The role of boundary layer convergence line in the initiation of s severe weather events[J].J Appl Meteor Sci, 22(6):724-731.<br/>王彦, 于莉莉, 李艳伟, 等, 2011.边界层辐合线对强对流系统形成和发展的作用[J].应用气象学报, 22(6):724-731.
[16]Xu D B, Xu A H, Xiao W, et al, 2015.Comprehensive Aanalysis on the severe convective weather situation configuration and its particularity in Northwest China[J].Plateau Meteor, 34(4):973-981.DOI:10.7522/j.issn.1000-0534.2014.00102.<br/>许东蓓, 许爱华, 肖玮, 等, 2015.中国西北四省区强对流天气形势配置及特殊性综合分析[J].高原气象, 34(4):973-981.
[17]Yu X D, 2012.Investigation of Beijing extreme flooding event on 21 July 2012[J].Meteor Mon, 38(11):1313-1329.<br/>俞小鼎, 2012.2012年7月21日北京特大暴雨成因分析[J].气象, 38(11):1313-1329.
[18]Yu X D, Yao X P, Xiong Y N, et al, 2006.Doppler weather radar principle and business applications[M].Beijing:China Meteorological Press:90-129.<br/>俞小鼎, 姚秀萍, 熊延南, 等, 2006.多普勒天气雷达原理与业务应用[M].北京:气象出版社:90-129.
[19]Zhang J G, Zhou J L, Chen W, et al, 2015.The structure and propagation characteristics of the extreme-rain-producing MCS on the west side of Dabie Mountain[J].Acta Meteor Sinica, 73(2):291-304.DOI:10.11676/qxxb2015.019.<br/>张家国, 周金莲, 谌伟, 等, 2015.大别山西侧极端降水中尺度对流系统结构与传播特征[J].气象学报, 73(2):291-304.
[20]Zhang P C, Du B Y, Dai B P, 2011.Radar meteorology[M].Beijing:China Meteorological Press:402-405.<br/>张培昌, 杜秉玉, 戴秉丕, 2011.雷达气象学[M].北京:气象出版社:402-405.
[21]Zhang Z X, Zhang Q, Zhao Q Y, et al, 2013.Analyses on disaster weather characteristics of massive mudslide in Zhouqu, Gansu on 8 August 2010[J].Plateau Meteor, 32(1):290-297.DOI:10.7522/j.issn.1000-0534.2012.00028.<br/>张之贤, 张强, 赵庆云, 等, 2013."8.8"舟曲特大山洪泥石流中天气特征分析[J].高原气象, 32(1):290-297.
[22]Zhao Q Y, Fu Z, Liu X W, et al, 2017.Characteristics of mesoscale system evolution of torrential rain in warm sector over northwest China[J].Plateau Meteor, 36(3):697-704.DOI:10.7522/j.issn.1000-0534.2016.00140.<br/>赵庆云, 傅朝, 刘新伟, 等, 2017.西北东部暖区大暴雨中尺度系统演变特征[J].高原气象, 36(3):697-704.
[23]Zhao Q Y, Song S T, Yang G M, et al, 2014.Spatial and temporal variations of torrential rain over Northwest China and general circulation anomalies in summer[J].Journal of Lanzhou University, 50(4):517-522.DOI:10.13885/j.issn.0455-2059.2014.04.013.<br/>赵庆云, 宋松涛, 杨贵名, 等, 2014.西北地区暴雨时空变化及异常年夏季环流特征[J].兰州大学学报, 50(4):517-522.
文章导航

/