论文

基于卫星资料的秦岭南北云系及其垂直结构特征

  • 位晶 ,
  • 段克勤
展开
  • 陕西师范大学地理科学与旅游学院, 陕西 西安 710000

收稿日期: 2017-11-29

  网络出版日期: 2018-06-28

基金资助

国家自然科学基金项目(41771030,41571062)

Analysis of Cloud System and Its Vertical Structure between the Southern and Northern Qinling Based on Satellite Data

  • WEI Jing ,
  • DUAN Keqin
Expand
  • School of Geography and Tourism, Shaanxi Normal University, Xi'an 710000, Shaanxi, China

Received date: 2017-11-29

  Online published: 2018-06-28

摘要

利用2007-2010年CloudSat/CALIPSO联合产品2B-CLDCLASS-LIDAR资料对关中、秦岭和陕南云出现概率及云垂直结构特征进行了研究。结果表明,各地区四季均以云天为主,云出现概率从南到北逐渐减少,但云出现概率最高的月份北部要早于南部。秦岭南北云层高度的季节变化单层云中关中地区最为显著,多层云则是陕南地区。云厚季节变化不明显,均在1~3 km之间。除少数情况外,8大云类在各地区不同云层中的出现概率具有显著的季节变化。除Ns(雨层云)在三层云下层及Dc(深对流云)在各层云中云顶和云厚存在明显的区域差异外,所有云类的云底云顶高度及平均厚度在不同云层的出现概率均没有明显的季节变化和区域差异。

本文引用格式

位晶 , 段克勤 . 基于卫星资料的秦岭南北云系及其垂直结构特征[J]. 高原气象, 2018 , 37(3) : 777 -785 . DOI: 10.7522/j.issn.1000-0534.2018.00057

Abstract

The relationship between cloud and climate is very complex. In order to quantitatively understand the feedback effect of clouds on the climate and improve the climate model, it is necessary to determine the cloud's global or local distribution and its internal structural characteristics under different dynamic conditions. Seasonal variations of cloud occurrence frequency and cloud vertical structures in Guanzhong, Qinling and Shannan regions from 2007 to 2010 were studied by using CloudSat/CALIPSO joint product. The results showed that the four seasons in all regions are dominated by cloud-days, the total cloud occurrence frequency is high in the south, but low in the north, and gradually decreases from south to north. However, the month with the highest total cloud occurrence frequency shows earlier in the north than in the south. The highest value of cloudtop/cloudbase height is in the south and the lowest value is in the north. Seasonal variation of cloudlayer height in the north and south of the Qinling Mountains, Guangzhong region is the most significant in single-layer cloud, while Shannan in the multi-layer cloud. The thickness of clouds in each region is 1~3 km, and slightly higher in summer and autumn than in spring and winter. There is no obvious seasonal changes in cloud thickness. In the single-layer cloud, Ci, As, and Sc occupy a considerable proportion, and Ac, Cu, and Dc occupy a certain proportion, while St and Ns have the smallest proportion. In the lower layers of two-layer clouds, Sc is the dominant type. Ci, As, Ns, and Dc decrease in all regions, while Ac, St, and Cu increase. In the lower layers of the three-layer cloud, Ac, Sc, and Cu are predominant, and Ns is the least. The middle layer is dominated by Ci, As, and Ac, and other clouds are rare. In the upper layer of multi-layer clouds, Ci occupies a higher proportion. In short, except for a few cases, occurrence frequency of eight major clouds in different regions has significant seasonal variations. Except for the obvious regional differences of the cloudtop height and cloud thicknesses of the Ns in the lower three-layer cloud and of the cloudtop height, cloutbase height and cloud thickness of the Dc in each cloudlayer, there is no obvious seasonal variation or regional difference in the cloudbase height, cloudtop height and average thicknesses of clouds in different cloudtype. These results provide insights into the nature of precipitation and formation mechanisms of precipitation in the region, and provide scientific basis for rational implementation of water resources deployment.

参考文献

[1]Ali B, Sean P F C, Bjorn H L, 2012.Three dimensional distribution of cloud types over the USA and surrounding areas observed by CloudSat[J].Int J Remote Sens, 33(16):4856-4870.DOI:10.1080/01431161.2011.639404.
[2]Gao W H, Chung H S, Hu Z J, 2014.A study of macrophysical and microphysical properties of warm clouds over the Northern Hemisphere using CloudSat/CALIPSO data[J].J Geophys Res:Atmospheres, 119(6):3268-3280.DOI:10.1002/2013JD020948.
[3]Kenneth S, Zhien W, Dong L, 2008.Global distribution of cirrus clouds from CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements[J].J Geophys Res, 113:D00A12, DOI:10.1029/2008JD009972.
[4]Kenneth S, Zhien W, Dong L, 2009.Cirrus clouds and deep convection in the tropics:Insightsfrom CALIPSO and CloudSa[J].J Geophys Res, 114:D00H06.DOI:10.1029/2009JD011916.
[5]Mark S, Tristanl E, 2015.A global assessment of the spatial distribution of precipitation occurrence[J].J Appl Meteor Climatol, 54:2179-2197.DOI:10.1175/JAMC-D-15-0019.1.
[6]Roger M, Gerald G M, Thomas A, et al, 2008.Hydrometeor detection using cloudsat-An Earth-Orbiting 94-GHz Cloud Radar[J].J Atmos Ocean Technol, 25:519-533.DOI:10.1175/2007JTECHA1006.1.
[7]Subrahmanyam K V, Kumar K K, 2013.Cloudsat observations of cloud-type distribution over the Indian[J].Ann Geophys, 31:1155-1162.DOI:10.5194/angeo-31-1155-2013.
[8]Subrata K D, Golhait R B, Uma K N, 2016.Clouds vertical properties over the Northern Hemisphere monsoon regions from CloudSat-CALIPSO measurements[J].Atmos Res, 183(2017):73-83.
[9]Taryn H, Graeme S, 2009.Characteristics of tropical thin cirrus clouds deduced from joint[J].J Geophys Res, 114:D00A25.DOI:10.1029/2008JD010675.
[10]Chen C, Meng H, Ji R J, et al, 2014.Cloud macroscopic characteristics over north China based on CloudSat data[J].Meteor Sci Technol, 42(2):295-301.<br/>陈超, 孟辉, 靳瑞军, 等, 2014.基于CloudSat云分类资料的华北地区云宏观特征分析[J].气象科技, 42(2):295-301.
[11]Ding S G, Shi G Y, Zhao C S, 2004.Analysis on changes in cloud amount of global different clouds and their possible impact on climate in nearly 20 years based on the ISCCP D2 data[J].Chinese Sci Bull, 49(11):1105-1111.<br/>丁守国, 石广玉, 赵春生, 2004.利用ISCCPD2资料分析近20全球不同云类云量的变化及其对气候可能的影响[J].科学通报, 49(11):1105-1111.
[12]Ding S G, Zhao C S, Shi G Y, 2005.Analysis of global total cloud amount variation over the past 20 years[J].J Appl Meteor Sci, 16(5):671-677.<br/>丁守国, 赵春生, 石广玉, 2005.近20年全球总云量变化趋势分析[J].应用气象学报, 16(5):671-677.
[13]Dong W Q, Zhang S Q, 2012.Analysis of cloud amount distribution and changing tendency in Shaanxi from 1957 to 2008[J].Shaanxi Meteor, (2):14-17.<br/>董文乾, 张社岐, 2012.19572008年陕西云量分布与变化趋势分析[J].陕西气象, (2):14-17.
[14]Gao Q X, Ren Z H, Jiang Z Y, 1998.Research on radiation forcing of cloud[J].Res Environ Sci, 11(1):1-4.DOI:10.13198/j.res.1998.01.3.gaoqx.001.<br/>高庆先, 任阵海, 姜振远, 1998.云的辐射强迫效应研究[J].环境科学研究, 11(1):1-4.
[15]Guang Y, Deng J Y, Chen Y H, et al, 2017.Vertical distribution and its seasonal variation of microphysical properties of stratiform clouds in Xinjiang[J].Arid Land Geography, 40(4):755-761.<br/>光莹, 邓军英, 陈勇航, 等, 2017.层状云微物理属性垂直分布的季节变化-以新疆地区为例[J].干旱区地理, 40(4):755-761.
[16]Kang M Y, Zhu Y, 2007.Discussion and analysis on the geo-ecological boundary in Qinling Range[J].Acta Ecologica Sinica, 27(7):2774-2784.<br/>康慕谊, 朱源, 2007, 秦岭山地生态分界线的论证[J].生态学报, 27(7):2774-2784.
[17]Li G W, 2010. Retrieval study on cloudtype temperature and cloudtype height based on CPR and MODIS exploration results[D]. Anhui: University of Science and Technology of China, 1-107.<br/>李光伟, 2010. 基于CPR和MODIS探测结果的云顶温度和云顶高度反演研究[D]. 安徽: 中国科学技术大学, 1-107.
[18]Li H R, Sun X J, Wang M Y, et al, 2015.Research on different types of cloud and variation characteristics of hydrometeors in cloud over China and its neighborhood in daytim[J].Plateau Meteor, 34(6):1625-1635.DOI:10.7522/j.issn.1000-0534.2014.00129.<br/>李浩然, 孙学金, 王旻燕, 等, 2015, 中国及周边地区白天各类云及其水凝物变化特征研究[J].高原气象, 34(6):1625-1635.
[19]Liu J J, Chen B D, 2017.Cloud occurrence frequency and structure over the Qinghai-Tibetan Plateau from Cloud Sat observation[J].Plateau Meteor, 36(3):632-642.DOI:10.7522/j.issn.1000-0534.2017.00028.<br/>刘建军, 陈葆德, 2017.基于CloudSat卫星资料的青藏高原云系发生频率及其结构[J].高原气象, 36(3):632-642.
[20]Liu J, Yang X F, Cui P, 2016.Validation of total cloud amount in 2007 derived by NOAA/AVHRR[J].Plateau Meteor, 35(4):1027-1038.DOI:10.7522/j.issn.1000-0534.2015.00029.<br/>刘健, 杨晓峰, 崔鹏, 2016.NOAA卫星2007年总云量数据精度评估[J].高原气象, 35(4):1027-1038.
[21]Lu Y J, Chen G Y, Gong K J, 2012.Overview of researches on cloud sounding methods[J].Meteor Sci Technol, 40(5):690-697.DOI:10.19517/j.1671-6345.2012.05.001.<br/>陆雅君, 陈刚毅, 龚克坚, 2012.测云方法研究进展[J].气象科技, 40(5):690-697.
[22]Peng J, Zhang H, Shen X Y, 2013.Analysis of vertical structure of clouds in East Asia with CloudSat data[J].Chinese J Atmos Sci, 37 (1):91-100.<br/>彭杰, 张华, 沈新勇, 2013.东亚地区云垂直结构的CloudSat卫星观测研究[J].大气科学, 37(1):91-100.
[23]Wang H, Luo Y L, Zhang R H, 2011.Analyzing seasonal variation of clouds over the Asian monsoon regions and the Tibetan Plateau region using CloudSat/CALIPSO data[J].Chinese J Atmos, 35(6):1117-1131.<br/>汪会, 罗亚丽, 张人禾, 2011.用CloudSat/CALIPSO资料分析亚洲季风区和青藏高原地区云的季节变化特征[J].大气科学, 35(6):1117-1131.
[24]王可丽, 江灏, 陈世强, 2001.青藏高原地区的总云量-地面观测、卫星反演和同化资料的对比分析[J].高原气象, 20(3):253-257.
[25]Wang K L, Jiang H, Chen S Q, 2011.Cloud cover over Qinghai-Xizang Plateau:Comparison among meteorological station observations, ISCCP-C2, and NCEP Reanalysis Data[J].Plateau Meteor, 20(3):253-257.
[26]Wang S H, Han Z G, Yao Z G, et al, 2011.An analysis of cloud types and macroscopic characteristics over China and its neighborhood based on the CloudSat data[J].Acta Meteor Sinica, 69(5):883-899.<br/>王帅辉, 韩志刚, 姚志刚, 等, 2011.基于CloudSat资料的中国及周边地区各类云的宏观特征分析[J].气象学报, 69(5):883-899.
[27]Wang Y, Bo Y, Wang C H, 2016.Relations of cloud amount to asymmetric diurnal temperature change in Central and Eastern Qinghai-Xizang Plateau[J].Plateau Meteor, 35(4):908-919.DOI:10.7522/j.issn.1000-0534.2015.00033.<br/>王艺, 伯玥, 王澄海, 2016.青藏高原中东部云量变化与气温的不对称升高[J].高原气象, 35(4):908-919.
[28]Yang B Y, Wu X J, Guo H, 2017.The characteristics of cloud properties in deep convective clouds across China with the CloudSat Dataset[J].Plateau Meteor, 36(6):1655-1664.DOI:10.7522/j.issn.1000-0534.2017.00006.<br/>杨冰韵, 吴晓京, 郭徵, 2017.基于CloudSat资料的中国地区深对流云物理特征研究[J].高原气象, 36(6):1655-1664.
[29]Yang D S, Wang P C, 2012.Characteristics of vertical distributions of cloud water contents over China during summe[J].Chinese J Atmos Sci, 36(1):89-101.<br/>杨大生, 王普才, 2012.中国地区夏季68月云水含量的垂直分布特征[J].大气科学, 36(1):89-101.
[30]Zhang Q, Li Y Q, Chen Q L, et al, 2011.Temporal and spatial distributions of cloud cover over southwest China in recent 46 years[J].Plateau Meteor, 30(2):339-348.<br/>张琪, 李跃清, 陈权亮, 等, 2011.近46年西南地区云量的时空变化特征[J].高原气象, 30(2):339-348.
[31]Zhang X, Duan K Q, Shi P H, 2015.Cloud vertical profiles from Cloud Sat data over the eastern Tibetan Plateau during summer[J].Chinese J Atmos Sci, 39(6):1073-1080.DOI:10.3878/j.issn.1006-9895.1502.14196.<br/>张晓, 段克勤, 石培宏, 2015.基于CloudSat卫星资料分析青藏高原东部夏季云的垂直结构[J].大气科学, 39(6):1073-1080.
[32]Zhou J S, Wang D H, 2016.The vertical structure of cloud in the Qinling-Daba Mounts[J].Journal of Chengdu University of Information Technology, 31(5):524-530.DOI:10.16836/j.cnki.jcuit.2016.05.015.<br/>周镜石, 王东海, 2016.秦巴山区云垂直结构分析[J].成都信息工程大学学报, 31(5):524-530.
[33]Zhou T, Huang Z W, Huang J P, et al, 2013.Study of vertical distribution of cloud over Loess Plateau based on a ground-based Lidar system[J].J Arid Meteor, 31(2):246-253.DOI:10.11755/j.Issn.1006-7639(2013)-02-0246.<br/>周天, 黄忠伟, 黄建平, 等, 2013.黄土高原地区云垂直结构的激光雷达遥感研究[J].干旱气象, 31(2):246-253.
[34]Zhou Y Q, Zhao S H, 2008.CloudSat satellite and its application in weather and cloud observation[J].Journal of Nanjing Institute of Meteorology, 31(5):603-614.<br/>周毓荃, 赵姝慧, 2008.CloudSat卫星及其在天气和云观测分析中的应用[J].南京气象学院学报, 31(5):603-614.
文章导航

/