论文

近实时卫星降水数据对南京“20170610”极端性强降水过程的监测分析

  • 李伶杰 ,
  • 胡庆芳 ,
  • 黄勇 ,
  • 王银堂 ,
  • 崔婷婷 ,
  • 曹士圯
展开
  • 南京水利科学研究院水文水资源与水利工程科学国家重点实验室, 江苏 南京 210029;安徽省气象科学研究所安徽省大气科学与卫星遥感重点实验室, 安徽 合肥 230031

收稿日期: 2017-08-08

  网络出版日期: 2018-06-28

基金资助

国家重点研发计划项目(2016YFC0400902);国家自然科学基金项目(51479118,51609140,51509157);中国工程院重大咨询研究项目(2015-ZD-07-02);中央级公益性科研院所基本科研业务费专项资金资助项目(Y517003)

Monitoring and Analysis of the Extreme Heavy Rainfall Process on June 10, 2017 in Nanjing Using Five Near Real Time Satellite Rainfall Estimations

  • LI Lingjie ,
  • HU Qingfang ,
  • HUANG Yong ,
  • WANG Yintang ,
  • CUI Tingting ,
  • CAO Shiyi
Expand
  • State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, Jiangsu, China;Anhui Key Lab of Atmospheric Science and Satellite Remote Sensing, Anhui Institute of Meteorological Sciences, Hefei 230031, Anhui, China

Received date: 2017-08-08

  Online published: 2018-06-28

摘要

以高密度的地面雨量站网观测数据为基准,综合分析了TRMM 3B42RT V7、IMERG Early、IMERG Late、GSMaP NRT、GSMaP NRT Gauge共5种近实时卫星降水数据对南京及周边地区2017年6月10日一次破历史记录的极端性强降水过程的监测能力。结果发现,在累积雨量方面,2种GSMaP数据有比较明显的低估,但基本再现了雨量中部高、南北低的空间分布格局;而3B42RT V7和2种IMERG对累积雨量的主要空间分布特征的辨识性较差。在降水强度时序变化方面,所有卫星数据均能正确探测到南京全市与江宁区的“20170610”降水过程,但在区域和网格尺度上对降水强度变化的动态跟踪能力明显不足,定量误差比较突出。5种数据中,GSMaP NRT的综合精度相对较高,而2种IMERG数据的表现尚不及3B42RT V7。总体上,近实时卫星降水数据对中小尺度极端性强降水过程的监测已展现了一定的积极效果,但捕捉降水落区及追踪降水动态变化的能力尚需大力改进。

本文引用格式

李伶杰 , 胡庆芳 , 黄勇 , 王银堂 , 崔婷婷 , 曹士圯 . 近实时卫星降水数据对南京“20170610”极端性强降水过程的监测分析[J]. 高原气象, 2018 , 37(3) : 806 -814 . DOI: 10.7522/j.issn.1000-0534.2017.00080

Abstract

Near real time satellite rainfall estimation (NRT-SRE) with high spatial-temporal resolution and timeliness provides an effective approach for monitoring extreme rainfall events, while its performance determines the reliability and applicability of the data. This paper comprehensively evaluated the capabilities of five NRT-SRE (including TRMM 3B42 V7, IMERG Early, IMERG Late, GSMaP NRT, GSMaP NRT Gauge) against a dense rain gauge network, for monitoring the record-broken extreme rainfall process on June 10, 2017 over Nanjing and the surrounding areas. The results demonstrated that, although two kinds of GSMaP data present notable underestimation of the accumulated rainfall, they basically capture the spatial pattern in which the cumulative rainfall is heavy in the central region while light in the northern and southern regions. However, 3B42RT V7 and two IMERG data showed poorer ability to identify the main spatial distribution characteristics of cumulative rainfall. Regarding to temporal variation of rainfall intensity, all NRT-SRE can correctly detect the extremely heavy rainfall process over Nanjing City and Jiangning District, but the dynamic tracking ability is obviously unsatisfactory with severe significant quantitative errors at the regional and grid scales. Comprehensive accuracy of GSMaP NRT is relatively higher among five NRT-SRE, while the performance of IMERG data is still poorer than 3B42RT V7. Overall, the NRT-SRE has exhibited positive performance on monitoring extremely heavy rainfall process at medium and small space scales, whereas their capabilities to capture precipitation falling areas and track temporal fluctuation of rainfall intensity need to be enhanced in practical applications.

参考文献

[1]Agha K A, Mehran A, 2013.Extended contingency table:Performance metrics for satellite observations and climate model simulations[J].Water Res Res, 49(10):7144-7149.DOI:10.1002/wrcr.20498.
[2]Chen S, Hong Y, Cao Q, et al, 2013.Performance evaluation of radar and satellite rainfalls for Typhoon Morakot over Taiwan:Are remote-sensing products ready for gauge denial scenario of extreme events?[J].J Hydrol, 506(25):4-13.DOI:10.1016/j.jhydrol.2012.12.026.
[3]Chen S, Liu H, You Y, et al, 2014.Evaluation of high-resolution precipitation estimates from satellites during July 2012 Beijing flood event using dense rain gauge observations[J].PloS one, 9(4):e89681.DOI:10.1371/journal.pone.0089681.
[4]Ebert E E, Janowiak J E, Kidd C, 2007.Comparison of near-real-time precipitation estimates from satellite observations and numerical models[J].Bull Amer Meteor Soc, 88(1):47-64.DOI:10.1175/BAMS-88-1-47.
[5]Habib E, Henschke A, Adler R F, 2009.Evaluation of TMPA satellite-based research and real-time rainfall estimates during six tropical-related heavy rainfall events over Louisiana, USA[J].Atmos Res, 94(3):373-388.DOI:10.1016/j.atmosres.2009.06.015.
[6]Hou A Y, Kakar R K, Neeck S, et al, 2014.The global precipitation measurement mission[J].Bull Amer Meteor Soc, 95(5):701-722.DOI:10.1175/BAMS-D-13-00164.1.
[7]Hu Q F, Yang D W, Wang Y T, et al, 2013.Accuracy and spatio-temporal variation of high resolution satellite rainfall estimate over the Ganjiang River Basin[J].Sci China Technol Sci, 56(4):853-865.DOI:10.1007/s11431-013-5176-7.
[8]Huffman G J, Bolvin D T, Nelkin E J, 2015.Integrated Multi-satellitE Retrievals for GPM (IMERG) technical documentation[J].NASA/GSFC Code, 612:47.
[9]Huffman G J, Bolvin D T, Nelkin E J, et al, 2007.The TRMM multisatellite precipitation analysis (TMPA):Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales[J].J Hydrometeor, 8(1):38-55.DOI:10.1007/978-90-481-2915-7_1.
[10]Kubota T, Shige S, Hashizume H, et al, 2007.Global precipitation map using satellite-borne microwave radiometers by the GSMaP project:Production and validation[J].IEEE Trans Geosci Remote Sens, 45(7):2259-2275.DOI:10.1109/TGRS.2007.895337.
[11]Li Z, Yang D, Hong Y, 2013.Multi-scale evaluation of high-resolution multi-sensor blended global precipitation products over the Yangtze River[J].J Hydrol, 500:157-169.DOI:10.1016/j.jhydrol.2013.07.023.
[12]Maggioni V, Meyers P C, Robinson M D, 2016.A review of merged high-resolution satellite precipitation product accuracy during the Tropical Rainfall Measuring Mission (TRMM) era[J].J Hydrometeor, 17(4):1101-1117.DOI:10.1175/JHM-D-15-0190.1.
[13]Shen Y, Xiong A, Wang Y, et al, 2010.Performance of high-resolution satellite precipitation products over China[J].J Geophys Res Atmos, 115(D2):355-365.DOI:10.1029/2009JD012097.
[14]Tang G, Zeng Z, Ma M, et al, 2017.Can near-real-time satellite precipitation products capture rainstorms and guide flood warning for the 2016 summer in South China?[J].IEEE Geosci Remote Sens Lett, 14(8):1208-1212.DOI:10.1109/LGRS.2017.2702137.
[15]Thornton P E, Running S W, White M A, 1997.Generating surfaces of daily meteorological variables over large regions of complex terrain[J].J Hydrol, 190(3/4):214-251.DOI:10.1016/S0022-1694(96)03128-9.
[16]Ushio T, Mega T, Kubota T, et al, 2016. Near real time product of the gauge adjusted GSMaP (GSMaP_Gauge_NRT)[C]//Geosci Remote Sens Symposium (IGARSS). IEEE, 3919-3922. DOI: <a href="http://dx.doi.org/10.1109/IGARSS.2016.7730018." target="_blank">10.1109/IGARSS.2016.7730018.</a>
[17]Yong B, Liu D, Gourley J J, et al, 2015.Global view of real-time TRMM multisatellite precipitation analysis:implications for its successor global precipitation measurement mission[J].Bull Amer Meteor Soc, 96(2):283-296.DOI:10.1175/BAMS-D-14-00017.1.
[18]Hu Q F, 2013. Rainfall spatial estimation using muti-source information and its hydrological application[D]. Beijng: Tsinghua University.<br/>胡庆芳, 2013. 基于多源信息的降水空间估计及其水文应用研究[D]. 北京: 清华大学.
[19]Li M, Qin T L, Liu S H, et al, 2017.Spatial-temporal validation of TRMM 3B42V7 precipitation products and analysis of precipitation characteristics in the upper reaches of Nujiang River[J].Plateau Meteor, 36(4):950-959.DOI:10.7522/j.issn.1000-0534.2016.00071.<br/>李蒙, 秦天玲, 刘少华, 等, 2017.怒江上游TRMM 3B42V7降水产品资料时空验证及降水特征分析[J].高原气象, 36(4):950-959.
[20]Nanjing Municipal People's Government, 2017. Statistical communique of national economic and social development of Nanjing in 2016[Z]. Nanjing: Nanjing Municipal People's Government.<br/>南京市人民政府, 2017. 南京市2016年国民经济和社会发展统计公报[Z]. 南京: 南京市人民政府.
[21]Shen Y, Pan Y, Yu J J, et al, 2013.Quality assessment of hourly merged precipitation product over China[J].Trans Atmos Sci, 36(1):37-46.DOI:10.3969/j.issn.1674-7097.2013.01.005.<br/>沈艳, 潘旸, 宇婧婧, 等, 2013.中国区域小时降水量融合产品的质量评估[J].大气科学学报, 36(1):37-46.
[22]Yang X, Wang Y Q, Liu Z H, 2016.Comparison of two different satellite precipitation data in Sichuan from May to August in 2013[J].Plateau Meteor, 35(4):1039-1049.DOI:10.7522/j.issn.1000-0534.2015.00060.<br/>杨星, 王永前, 刘志红, 2016.四川省2013年夏季卫星降雨数据的对比研究[J].高原气象, 35(4):1039-1049.
[23]Zhou J K, Tang Y Y, Xu Z X, 2003.Statistical analysis of precipitation of Nanjing rain gauging station[J].J Hydrol, 23(6):35-38.DOI:10.3969/j.issn.1000-0852.2003.06.009.<br/>周建康, 唐运忆, 徐志侠, 2003.南京站降水量的统计分析[J].水文, 23(6):35-38.
文章导航

/