论文

鄂东暖区暴雨个例的高分辨率模拟对边界层方案的敏感性

  • 许建玉
展开
  • 中国气象局武汉暴雨研究所 暴雨监测预警湖北省重点实验室, 湖北 武汉 430205

收稿日期: 2017-09-15

  网络出版日期: 2018-10-28

基金资助

国家自然科学基金项目(41620104009);中国气象局预报关键技术发展专项[YBGJXM(2017)1A];2017年度湖北省气象局自筹经费项目(2017C01)

Sensitivity of High-Resolution Simulations of the Warm-Sector Rainstorm in Eastern Hubei to Planetary Boundary Layer Schemes

  • XU Jianyu
Expand
  • Hubei Key Laboratory for Heavy Rain Monitoring and Warning Research, Institute of Heavy Rain, China Meteorological Administration, Wuhan 430205, Hubei, China

Received date: 2017-09-15

  Online published: 2018-10-28

摘要

2016年7月5-6日,鄂东发生了一次典型的副热带高压边缘型暖区暴雨。本研究使用WRF模式对该过程进行积云可分辨模拟,重点关注不同边界层方案下(ACM2、YSU、MYJ)短时强降水的差异及其可能原因。结果表明:相比ACM2,YSU和MYJ方案的短时强降水呈现先强后弱的特点;究其原因,与后两种方案下强对流的提前触发和消散有关。具体地,在对流触发前,YSU和MYJ方案模拟的涡流扩散性系数较ACM2偏小,边界层V风倾向偏弱,从而低层南风减速不明显,使得南风辐合偏强并提前触发强对流;而在消亡阶段,YSU和MYJ方案下强对流很快消散,但ACM2方案模拟的低层切变线上不断有对流新生;进一步,通过关闭微物理潜热加热的敏感试验,证实了低层切变线的产生与前期强降水潜热释放对中尺度环境场的改变有关,边界层过程的作用相对较小。另一方面,使用高分辨率模式结果对不同边界层方案下云微物理特征的分析表明,短时强降水的形成与霰的融化主导冷云降水过程有关,相比ACM2,YSU和MYJ方案下短时强降水的先强后弱对应于霰含量的先多后少。

本文引用格式

许建玉 . 鄂东暖区暴雨个例的高分辨率模拟对边界层方案的敏感性[J]. 高原气象, 2018 , 37(5) : 1313 -1324 . DOI: 10.7522/j.issn.1000-0534.2018.00003

Abstract

A typical warm-sector rainstorm occurred in eastern Hubei during 5-6 July 2016, causing severe flooding and damage. This heavy rainfall event, associated with an unusual environment to trigger convection, happened on the edge of subtropical high. The Weather Research and Forecast (WRF) model is used to simulate this event in cloud-resolving resolution (3 km). Experiments are conducted to examine the sensitivity of the simulation to the use of three different planetary boundary layer schemes, including the asymmetric convective models like version 2 (ACM2), Yonsei University (YSU), and Mellor-Yamada-Janjic (MYJ) schemes. Numerical results show a significant sensitivity of the short-time heavy rainfall to planetary boundary layer schemes, with the YSU and MYJ schemes produce stronger rainstorm in the development stage of precipitation and weaker rainstorm in the extinction stage compared to the ACM2 scheme, which is mainly due to the earlier triggering and earlier extinction of the strong convection in the simulations with the YSU and MYJ schemes. Specifically, before convection triggering, the eddy diffusivity coefficients simulated by the YSU and MYJ schemes are much less than the ACM2 scheme, and the meridional wind tendencies due to planetary boundary layer processes are much weaker, so the deceleration of the low-level south wind is less, leading to the enhanced convergence of south wind and the earlier triggering of strong convection. While in the extinction stage of precipitation, convections simulated by the YSU and MYJ schemes disappear quickly, comparing with the new convections initiated continuously on the low level shear line which is more obvious in the simulation with the ACM2 scheme. Furthermore, a sensitivity test is carried out with the latent heating from the microphysical processes turned off during the extinction stage of precipitation, which shows that the generation of the low level shear line is mainly due to the regulation of the mesoscale environment by the latent heat release from precipitation in the development stage, while the effect of planetary boundary layer processes is relatively small. On the other hand, detailed analysis of the impact of planetary boundary layer schemes on cloud microphysics and resulting precipitation shows that, the formation of the short-time heavy rainfall is related to the dominant role played by the melting graupel in the cold-cloud precipitation. Compared to the ACM2 scheme, simulations with the YSU and MYJ schemes produce more graupel in the development stage of precipitation and less graupel in the extinction stage, which is corresponding to the characteristics of the short-time heavy rainfall.

参考文献

[1]Chen F, Dudhia J, 2001. Coupling an advanced landsurface-hydrology model with the Penn State-NCAR MM5 modeling system. Part Ⅰ:Model implementation and sensitivity[J]. Mon Wea Rev, 129(4):569-585.
[2]Dudhia J, 1989. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model[J]. J Atmos Sci, 46(20):3077-3107.
[3]Hong S Y, Noh Y, Dudhia J, 2006. A new vertical diffusion package with an explicit treatment of entrainment process[J]. Mon Wea Rev, 134(9):2318-2341.
[4]Janjic Z I. 2002. Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso model[Z]. NCEP Office Note, No. 437, 61.
[5]Mellor G L, Yamada T, 1982. Development of a turbulence closure model for geophysical fluid problems[J]. Rev Geophys, 20(4):851-875.
[6]Mlawer E J, Taubman S J, Brown P D, et al, 1997. Radiative transfer for inhomogeneous atmosphere:RRTM, a validated correlated-k model for the longwave[J]. J Geophys Res, 102 (D14):16663-16682.
[7]Morrison H, Curry J A, Khvorostyanov V I, 2005a. A new double-moment microphysics parameterization for application in cloud and climate models. Part Ⅰ:Description[J]. J Atmos Sci, 62(6):1665-1677.
[8]Morrison H, Curry J A, Shupe M D, et al, 2005b. A new double-moment microphysics parameterization for application in cloud and climate models. Part Ⅱ:Single-column modeling of Arctic clouds[J]. J Atmos Sci, 62(6):1678-1693.
[9]Morrison H, Thompson G, Tatarskii V, 2009. Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line:Comparison of one-and two-moment schemes[J]. Mon Wea Rev, 137(3):991-1007.
[10]Pleim J E, 2007a. A combined local and non-local closure model for the atmospheric boundary layer. Part Ⅰ:Model description and testing[J]. J Appl Meteor Climatol, 46(9):1383-1395.
[11]Pleim J E, 2007b. A combined local and non-local closure model for the atmospheric boundary layer. Part Ⅱ:Application and evaluation in a mesoscale meteorological model[J]. J Appl Meteor Climatol, 46(9):1396-1409.
[12]Skamarock W C, Klemp J B, Dudhia J, et al, 2008. A description of the Advanced Research WRF version 3[Z]. NCAR Tech. Note NCAR/TN4755TR. 113.
[13]Wisse J S P, Vila-Guerau de A J, 2004. Analysis of the role of the planetary boundary layer schemes during a severe convective storm[J]. Annales Geophysicae, 22(6):1861-1874.
[14]Xu L R, Zhao M, 2000. The influence of boundary layer parameterization schemes on mesoscale heavy rain system[J]. Adv Atmos Sci, 17(3):458-472.
[15]Cai X N, Shou S W, Zhong Q, 2006. Impact of different boundary layer parameterization schemes on the numerical simulation for a rainstorm[J]. Journal of Nanjing Institute of Meteorology, 29(3):364-370.<br/>蔡芗宁, 寿绍文, 钟青. 2006.边界层参数化方案对暴雨数值模拟的影响[J].南京气象学院学报, 29(3):364-370.
[16]Cai X N, Zhou Q L, Zhong Q, et al, 2007. Impact of boundary layer parameterization on numerical simulation of "Ya-An-Tian-Lou"[J]. Meteor Mon, 33(5):12-19.<br/>蔡芗宁, 周庆亮, 钟青, 等. 2007.边界层参数化对"雅安天漏"降水数值模拟的影响[J].气象, 33(5):12-19.
[17]Chen J, Wang J J, 2006. Mesoscale precipitation simulation sensitivity to PBL parameterization[J]. Quart J Appl Meteor, 17(suppl1):11-17.<br/>陈炯, 王建捷. 2006.边界层参数化方案对降水预报的影响[J].应用气象学报, 17(增刊1):11-17.
[18]Chenyang R X, Luo Y L, 2016. Analysis of the influence of different parameterization schemes representing the planetary boundary layer and land surface processes on convection-permitting simulations of a heavy rainfall event along Mei-yu front[J]. J Trop Meteor, 32(5):656-667.<br/>陈杨瑞雪, 罗亚丽. 2016.不同边界层参数化方案和陆面过程参数化方案对一次梅雨锋暴雨显式对流模拟的影响分析[J].热带气象学报, 32(5):656-667.
[19]Chen Y, Chen Y, Chen T, et al, 2016. Characteristics analysis of warim-sector rainstorm over the middle-lower reaches of the Yangtze river[J]. Meteor Mon, 42(6):724-731.<br/>陈玥, 谌芸, 陈涛, 等. 2016.长江中下游地区暖区暴雨特征分析[J].气象, 42(6):724-731.
[20]Chen Y, Sun J, Xu J, et al, 2012. Analysis and thinking on the extremes of the 21 July 2012 torrential rain in Beijing. Part Ⅰ:Observation and thinking[J]. Meteor Mon, 38(10):1255-1266.<br/>谌芸, 孙军, 徐珺, 等. 2012.北京721特大暴雨极端性分析及思考(一)观测分析及思考[J].气象, 38(10):1255-1266.
[21]Fu Z, Yang X J, Zhou X J, et al, 2015. Analysis on Doppler radar characteristics of warm area rainstorm in southeastern Gansu during 19-20 June 2013[J]. Meteor Mon, 41(9):1095-1103.<br/>傅朝, 杨晓军, 周晓军, 等. 2015.2013年6月19-20日甘肃陇东南暖区暴雨多普勒雷达特征分析[J].气象, 41(9):1095-1103.
[22]He L F, Chen T, Kong Q, 2016. A review of studies on prefrontal torrential rain in south China[J]. J Appl Meteor Sci, 27(5):559-569.<br/>何立富, 陈涛, 孔期. 2016.华南暖区暴雨研究进展[J].应用气象学报, 27(5):559-569.
[23]Huang S S, 1986. The early summer flood periods of southern China[M]. Guangzhou:Guangdong Science and Technology Press, 244.<br/>黄士松. 1986.华南前汛期暴雨[M].广州:广东科技出版社, 244.
[24]Li F, Zou H, Zhou L B, et al, 2017. Study of boundary layer parameterization schemes' applicability of WRF Model over complex underlying surfaces in Southeast Tibet[J]. Plateau Meteor, 36(2):340-357. DOI:10.7522/j.issn. 1000-0534.2016.00041.<br/>李斐, 邹捍, 周立波, 等. 2017. WRF模式中边界层参数化方案在藏东南复杂下垫面适用性研究[J].高原气象, 36(2):340-357.
[25]Lu H Z, Zhang N, Liu Y W, 2015. Organization characteristic and causal analysis of meso-scale convective system of locally torrential rain in Tianjin[J]. Torrential Rain Disasters, 34(1):17-26.<br/>卢焕珍, 张楠, 刘一玮. 2015.天津一次局地大暴雨中尺度对流系统组织化特征与成因[J].暴雨灾害, 34(1):17-26.
[26]Luan L, Meng X H, Lü S H, et al, 2017. Impacts of microphysics and PBL physics parameterization on a convective precipitation over the Qinghai-Tibetan Plateau[J]. Plateau Meteor, 36(2):283-293. DOI:10.7522/j.issn. 1000-0534.2016.00086.<br/>栾澜, 孟宪红, 吕世华, 等. 2017.青藏高原一次对流降水模拟中边界层参数化和云微物理的影响研究[J].高原气象, 36(2):283-293.
[27]Sun J, Chen Y, Yang S N, et al, 2012. Analysis and thinking on the extremes of the 21 July 2012 torrential rain in Beijing. Part Ⅱ:preliminary causation analysis and thinking[J]. Meteor Mon, 38(10):1267-1277.<br/>孙军, 谌芸, 杨舒楠, 等. 2012.北京721特大暴雨极端性分析及思考(二)极端性降水成因初探及思考[J].气象, 38(10):1267-1277.
[28]Wang B J, Kong X W, Fu Z, et al, 2016. Analysis on mesoscale characteristics of a rainstorm process in southeastern Gansu[J]. Plateau Meteor, 35(6):1551-1564. DOI:10.7522/j.issn. 1000-0534.2015.00114.<br/>王宝鉴, 孔祥伟, 傅朝, 等. 2016.甘肃陇东南一次大暴雨的中尺度特征分析[J].高原气象, 35(6):1551-1564.
[29]Wang S L, Kang H W, Gu X Q, et al, 2015. Numerical simulation of mesoscale convective system in the warm sector of Beijing "7.21" severe rainstorm[J]. Meteor Mon, 41(5):544-553.<br/>王淑莉, 康红文, 谷湘潜, 等. 2015.北京7·21暴雨暖区中尺度对流系统的数值模拟[J].气象, 41(5):544-553.
[30]Xiao Y H, He G B, Gu Q Y, et al, 2010. Impact of boundary layer parameterization schemes on numerical simulation of different property precipitation[J]. Plateau Meteor, 29(2):331-339.<br/>肖玉华, 何光碧, 顾清源, 等. 2010.边界层参数化方案对不同性质降水模拟的影响[J].高原气象, 29(2):331-339.
[31]Xu H Y, Zhu Y, Liu R, et al, 2013. Simulation experiments with different planetary boundary layer schemes in the lower reaches of the Yangtze River[J]. Chinese J Atmos Sci, 37(1):149-159.<br/>徐慧燕, 朱业, 刘瑞, 等. 2013.长江下游地区不同边界层参数化方案的试验研究[J].大气科学, 37(1):149-159.
[32]Yang Y H, Liu C H, Dudhia J, et al, 2016. Evaluation of two typical PBL parameterization schemes based on large-eddy simulation result[J]. Plateau Meteor, 35(1):172-180. DOI:10.7522/j.issn. 1000-0534.2014.00138.<br/>杨玉华, 刘长海, Dudhia J, 等. 2016.基于大涡模拟对两类典型边界层参数化方案的评估分析[J].高原气象, 35(1):172-180.
[33]Zhang X H, Ni Y Q, 2009. A comparative study of a frontal and a non-frontal convective system[J]. Acta Meteor Sinica, 67(1):108-121.<br/>张晓惠, 倪允琪. 2009.华南前汛期锋面对流系统与暖区对流系统的个例分析与对比研究[J].气象学报, 67(1):108-121.
[34]Zhao M, 2008. A review of the research on the effects of boundary layer and land surface process on heavy rain in China[J]. Torrential Rain Disasters, 27(2):186-190.<br/>赵鸣. 2008.边界层和陆面过程对中国暴雨影响研究的进展[J].暴雨灾害, 27(2):186-190.
文章导航

/