论文

东北冷涡背景下超级单体风暴环境条件与雷达回波特征

  • 张桂莲 ,
  • 常欣 ,
  • 黄晓璐 ,
  • 訾耀海 ,
  • 李瑞青 ,
  • 梁凤娟
展开
  • 内蒙古自治区气象台, 内蒙古 呼和浩特 010051;内蒙古赤峰市气象局, 内蒙古 赤峰 024000;内蒙古巴彦淖尔市气象局, 内蒙古 临河 015000

收稿日期: 2017-12-12

  网络出版日期: 2018-10-28

基金资助

内蒙古自治区气象局预报员暴雨创新团队项目

The Environmental Conditions and Radar Echo Characteristics of the Super Cell Storm under the Background of the Northeast Cold Vortex

  • ZHANG Guilian ,
  • CHANG Xin ,
  • HUANG Xiaolu ,
  • ZI Yaohai ,
  • LI Ruiqing ,
  • LIANG Fengjuan
Expand
  • Inner Mongolia Autonomous Region Meteorological Observatory, Huhhot 010051, Inner Mongolia, China;Inner Mongolia Chifeng Meteorological Bureau, Chifeng 024000, Inner Mongolia, China;Inner Mongolia BaYanNaoEr Meteorological Bureau, LinHe 015000, Inner Mongolia, China

Received date: 2017-12-12

  Online published: 2018-10-28

摘要

利用常规观测、地面加密自动站、多普勒天气雷达观测资料以及NECP(1°×1°)逐6 h再分析资料对2016年8月16日内蒙古东南部地区由于超级单体风暴诱发的强冰雹、雷暴大风等强对流天气进行了分析。结果表明:这次超级单体风暴发生在高空东北冷涡和低层暖式切变线形成的强不稳定层结背景下,低层丰富的水汽、中等强度对流有效位能和大的深层垂直风切变,为强对流天气的发生提供了非常有利的环境条件;地面中尺度辐合线和露点锋两种对流系统耦合并加强是对流风暴的触发机制;雷达回波有钩状回波、弱回波区WER(Weak Echo Region)、回波悬垂、回波墙、中气旋等超级单体风暴特征,其中弱回波区,回波悬垂由反射率因子从低到高向低层入流一侧倾斜且回波强度梯度大;风暴内中层维持较深厚的气旋性辐合,风暴顶则表现出明显的气旋性辐散特征,标志大冰雹的三体散射长钉TBSS(Three-Body Scatter Spike)特征回波,50 dBZ以上的反射率因子核心的高度伸展到-20℃以上,为典型的产生冰雹的回波结构;垂直液态水含量VIL(Vertical Integrated Liquid Water Content)与风暴顶高之比即VIL密度达到5 g·m-3,这也是大冰雹的预报指标。

本文引用格式

张桂莲 , 常欣 , 黄晓璐 , 訾耀海 , 李瑞青 , 梁凤娟 . 东北冷涡背景下超级单体风暴环境条件与雷达回波特征[J]. 高原气象, 2018 , 37(5) : 1364 -1374 . DOI: 10.7522/j.issn.1000-0534.2018.00068

Abstract

Based on the conventional observational data, automatic weather station data, Doppler radar data and NCEP (1°×1°)every six hours reanalysis data, the strong convective weather such as strong hail and thunderstorm wind induced by super cell storm in southeastern Inner Mongolia on 16 August 2016 was analyzed. The main conclusions are as follows:The super cell storm occurred in the background of strong unstable conditions caused by the northeast cold vortex in the high altitude and the warm-wet shear line in the low level. The rich water vapor in the low level, medium intensity of CAPE and large deep vertical wind shear provides a very favorable environmental condition for the strong convective weather. The coupling and strengthening of the surface meso-scale convergent line and dew point front is the trigger mechanism of convective storm. The features of a supercell storm can be found, such as the hook echo, WER, overhang echo, echo wall, and mesocyclone in the reflectivity products. Besides, the WER and overhang echo have large intensity gradient, which is tilting toward low-level inflow side from low to high; The mid-level of the storm maintained a relatively strong cyclonic convergence, and the top of the storm showed significant cyclonic divergence. TBSS (Three-Body Scatter Spike) exists and the core of reflectivity above 50 dBZ extends above -20℃, which is a typical echo structure of hail. The ratio of the VIL (Vertical Integrated Liquid Water Content) and the top height of the storm which means the density of VIL reaching to 5 g·m-3 that also a predictor of hail.

参考文献

[1]Amburn S A, Wolf P L, 1997. VIL density as a hail indicator[J]. Wea Forecasting, 12:473-478.
[2]Browning K A, 1962. Cellular structure of convective storms[J]. Meteor Mag, 91(1085):341-350.
[3]Donaldson R J Jr, 1970. Vortex signature recognition by a Doppler radar[J]. J Appl Meteor, 9(4):661-670.
[4]Doswell C A, Burgess D W, 1993. Tornadoes and toraadic storms: A review of conceptual models[M]//The Tornado: Its Structure, Dynamics, Prediction, and Hazards. American Geophysical Union, 161-172.
[5]Doswell C A, Harold E B, Robert A M, 1996. Flash flood forecasting:An ingredients-based methodology[J]. Wea Forecasting, 11(4):560-581.
[6]Doswell C A, 1987. The distinction between large-scale and mesoscale contribution to severe convection:A case study example[J]. Wea Forecasting, 2(1):3-16.
[7]Weisman M L, Klemp J B, 1982. The dependence of numerically simulated convective storms in vertical wind shear and buoyancy[J]. Mon Wea Rev, 110(6):504-520.
[8]Witt A, Eilts M D, Stumpf G J, et al, 1998. An enhanced hail detection algorithm for the WSR-88D[J]. Wea Forecasting, 13:286-303.
[9]Chen Q P, Chen Q C, Feng J Q, et al, 2015. Analysis of two severe hail supercell storms on 11 April 2012[J]. Meteor Mon, 41(1):25-33.<br/>陈秋萍, 陈齐川, 冯晋勤, 等, 2015. "2012·4·11"两个强降雹超级单体特征分析[J].气象, 41(1):25-33.
[10]Dai J H, Tao L, Ding Y, et al, 2012. Case analysis of a large hail-producing severe supercell ahead of a squall line[J]. Acta Meteor Sinca, 70(4):609-627.<br/>戴建华, 陶岚, 丁杨, 等, 2012.一次罕见飑前强降雹超级单体风暴特征分析[J].气象学报, 70(4):609-627.
[11]Fang C, Wang X G, Sheng J, et al, 2017. Temporal and spatial distribution of North China thundergust winds and the statistical analysis of physical characteristics[J]. Plateau Meteor, 36(5):1368-1385. DOI:10.7522/j. issn. 1000-0534.2016.00083.<br/>方翀, 王西贵, 盛杰, 等, 2017.华北地区雷暴大风的时空分布及物理量统计特征分析[J].高原气象, 36(5):1368-1385.
[12]Feng J Q, Yu X D, Fu W H, et al, 2012. Comparative analysis onsupercell storm structure of a severe hail shooting in Fujian Province in early spring of 2010[J]. Plateau Meteor, 31(1):239-250.<br/>冯晋勤, 俞小鼎, 傅伟辉, 等, 2012.2010年福建一次早春强降雹超级单体风暴对比分析[J].高原气象, 31(1):239-250.
[13]Fu S X, Wang F C, Guo L C, 2014. Observation and analysis of a left-moving supercell[J]. J Arid Meteor, 32 (6):996-1002.<br/>付双喜, 王伏村, 郭良才, 2014.一次左移反气旋超级单体的观测分析[J].干旱气象, 32(6):996-1002.
[14]Niu B, Zhang J G, Wu T, et al, 2016. Analysis on weather process of supercell storm in northwest of Hubei Province[J]. Torrential Rain Disaster, 35(1):45-52.<br/>牛奔, 张家国, 吴涛, 等, 2016.鄂西北一次超级单体风暴的多普勒天气雷达观测分析[J].暴雨灾害, 35(1):45-52.
[15]Nong M S, Qi L Y, Huang H H, et al, 2011. A case study on supercell storm of hail in the northwest of Guangxi[J]. Meteor Mon, 37(12):1519-1520.<br/>农孟松, 祁丽燕, 黄海洪, 等, 2011.桂西北一次超级单体风暴过程的分析[J].气象, 37(12):1519-1520.
[16]Si F Y, Zhou S W, Wang C H, et al, 2015. Analysis of a severe convection event causing heavy disaster in north central of Henan[J]. Plateau Meteor, 34(6):1732-1740. DOI:10.7522/j. issn. 1000-0534.2015.00027.<br/>司福意, 周顺武, 王传辉, 等, 2015.豫中北一次重致灾强对流天气过程剖析[J].高原气象, 34(6):1732-1740.
[17]Wang Y Q, Li F, Jiang Y Y, et al, 2013. Analysis on environment conditions of supercell storms over Yichang, Huhei province[J]. Torrential Rain Disaster, 32(1):53-61.<br/>汪应琼, 李芳, 姜玉印, 等, 2013.湖北宜昌超级单体风暴发生的环境条件分析[J].暴雨灾害, 32(1):53-61.
[18]Wang F X, Pei Y J, Yang X L, et al, 2011. Characteristic of heavy precipitation and gale analysis of supercell storm on 23 July 2009[J]. Plateau Meteor, 30(6):1690-1700.<br/>王福侠, 裴宇杰, 杨晓亮, 等, 2011. "090723"强降水超级单体风暴特征及强风原因分析[J].高原气象, 30(6):1690-1700.
[19]Wang X H, Cao S Y, Wang J X, et al, 2012. Mesoscale analysis on a severe supercell in autumn[J]. J Meteor Sci, 32(6):685-693.<br/>王啸华, 曹舒娅, 王金鑫, 等, 2012.一次秋季强降水超级单体风暴过程分析[J].气象科学, 32(6):685-693.
[20]Wu F F, Yu X D, Zhang Z G, et al, 2013. A study of the environmental conditions and radar echo characteristics of the supercell-storms in northern Jiangsu[J]. Acta Meteor Sinca, 71(2):209-227.<br/>吴芳芳, 俞小鼎, 张志刚, 等, 2013.苏北地区超级单体风暴环境条件与雷达回波特征[J].气象学报, 71(2):209-227.
[21]Wu H Y, Chen H S, Liu M, et al, 2017. Structure characteristics, formation and maintenance mechanism of supercell with long life cycle[J]. Meteor Mon, 43(2):141-150.<br/>吴海英, 陈海山, 刘梅, 2017.长生命史超级单体结构特征与形成维持机制[J].气象, 43(2):141-150.
[22]Wu Z F, Pang G Q, He H Q, et al, 2014. Comparative analysis of environmental conditions and structural features for the left-moving supercell and the supercell in squallline in April 2012 Guangdong[J]. Meteor Mon, 40(6):655-667.<br/>伍志方, 庞古乾, 贺汉青, 等, 2014.2012年4月广东左移和飑线内超级单体的环境条件和结构对比分析[J].气象, 40(6):655-667.
[23]Xu A H, Sun J S, Xu D P, et al, 2014. Basic synoptic situation classification and element character of severe convection in China[J]. Meteor Mon, 40(4):400-411.<br/>许爱华, 孙继松, 许东蓓, 等, 2014.中国中东部强对流天气的天气形势分类和基本要素配置特征[J].气象, 40(4):400-411.
[24]Ye G X, Liu Z H, Liu G Y, 2014. Characteristic of a rare moving left supercell storm[J]. J Arid Meteor, 32(3):431-438.<br/>叶更新, 刘壮华, 刘国禹, 2014.一次罕见的左移超级单体风暴的特征[J].干旱气象, 32(3):431-438.
[25]Yu X D, Wang X M, Zhou X G, 2012. The advances in the nowcasting techniqueson thunderstorms and severe convection[J]. Acta Meteor Sinca, 70(3):311-337.<br/>俞小鼎, 王秀明, 周小刚, 2012.雷暴与强对流临近天气预报技术进展[J].气象学报, 70(3):311-337.
[26]Yu X D, Yao X P, Xiong T N, et al, 2006. Principle and operational application of Doppler Weather Radar[M]. Beijing:China Meteor Press, 118-119.<br/>俞小鼎, 姚秀萍, 熊廷南, 等, 2006.多普勒天雷达原理于业务应用[M].北京:气象出版社, 118-119.
[27]Yu X D, Zheng Y Y, Liao Y F, et al, 2008. Observational investigation of a tornadic heavy precipitation supercell storm[J]. J Atmos Sci, 32(3):508-522.<br/>俞小鼎, 郑媛媛, 廖玉芳, 等, 2008.一次伴随强烈龙卷的强降水超级单体风暴研究[J].大气科学, 32(3):508-522.
[28]Yu X D, 2011. Ingredients based forecasting methodology[J]. Meteor Mon, 37(8):913-918.<br/>俞小鼎, 2011.基于构成要素的预报方法-配料法[J].气象, 37(8):913-918.
[29]Zeng M J, Wu H Y, Wang X F, et al, 2016. Analysis on environmental conditions and structural features of typical convectivetornado storm in Meiyu period[J]. Meteor Mon, 42(3):280-293.<br/>曾明剑, 吴海英, 王晓峰, 等, 2016.梅雨期龙卷环境条件与典型龙卷对流风暴结构特征分析[J].气象, 42(3):280-293.
[30]Zhang Y P, Yu X D, Wu Z, et al, 2012. Analysis of the two tornado events during a process of regional torrential rain[J]. Acta Meteor Sinca, 70(5):961-973.<br/>张一平, 俞小鼎, 吴蓁, 等, 2012.区域性暴雨过程中两次龙卷风事件分析[J].气象学报, 70(5):961-973.
[31]Zhai L P, Nong M S, Lai Z Q, et al, 2018. Formation and structure of '4·20' warm sector squall line in Guangxi Province[J]. Plateau Meteor, 37(2):568-576. DOI:10.7522/j. issn. 1000-0534.2017.00058.<br/>翟丽萍, 农孟松, 赖珍权, 等, 2018.广西"4·20"暖区飑线的形成及结构[J].高原气象, 37(2):568-576.
[32]Zhao G X, Wang X L, Wang Y J, 2017. Comparative analysis of structure characteristics of MCC over the Yellow River midstream between the spring and the summer[J]. Plateau Meteor, 36(6):1638-1654. DOI:10.7522/j. issn. 1000-0534.2016.00138.<br/>赵桂香, 王晓丽, 王一颉, 2017.黄河中游地区初春与盛夏MCC结构特征比较分析[J].高原气象, 36(6):1638-1654.
[33]Zhao J R, Guo J Q, Yang J H, et al, 2011. A super monomer of disastrous hail storm radar echo characteristics analysis[J]. Plateau Meteor, 30(6):1681-1689.<br/>赵俊荣, 郭金强, 杨景辉, 等, 2011.一次致灾冰雹的超级单体风暴雷达回波特征分析[J].高原气象, 30(6):1681-1689.
[34]Zhao Q Y, Fu C, Liu X W, et al, 2017. Characteristics of mesoscale system evolution of torrential rain in warm sector over Northwest China[J]. Plateau Meteor, 36(3):697-704. DOI:10.7522/j. issn. 1000-0534.2016.00140.<br/>赵庆云, 傅朝, 刘新伟, 等, 2017.西北东部暖区大暴雨中尺度系统演变特征[J].高原气象, 36(3):697-704.
[35]Zheng Y, Li Y Y, Cai Q B, et al, 2014. Analysis of environment condition and supercell evolution for a rare severe hail weather event in Hainan[J]. Torrential Rain Disasters, 33(2):163-170.<br/>郑艳, 李云艳, 蔡亲波, 等, 2014.海南一次罕见强冰雹过程环境条件与超级单体演变特征分析[J].暴雨灾害, 33(2):163-170.
[36]Zhen Y Y, Zhu H F, Fang X, et al, 2009. Characteristic analysis and early-warning of tornado supercell storm[J]. Plateau Meteor, 28(3):617-625.<br/>郑媛媛, 朱红芳, 方翔, 等, 2009.强龙卷超级单体风暴特征分析与预警研究[J].高原气象, 28(3):617-625.
[37]Zhou H F, Diao X G, Xia W M, et al, 2014. Analysis of the tornadosupercell storm and its environmental parameters in the Yangtze-Huaihe region[J]. Acta Meteor Sinica, 72(2):306-317.<br/>周后福, 刁秀广, 夏文梅, 等, 2014.江淮地区龙卷超级单体风暴及其环境参数分析[J].气象学报, 72(2):306-317.
[38]Zhu J S, Liu J, Bian Z, et al, 2015. Analysis of cell merger and vortex signature during generation of tornado in Anhui based on doppler radar observation[J]. Meteor Mon, 41(2):182-191.<br/>朱江山, 刘娟, 边智, 等, 2015.一次龙卷生成中风暴单体合并和涡旋特征的雷达观测研究[J].气象, 41(2):182-191.
文章导航

/